首页> 外文期刊>Computer networks >A regression framework for predicting user's next location using Call Detail Records
【24h】

A regression framework for predicting user's next location using Call Detail Records

机译:使用呼叫详细记录预测用户下一个位置的回归框架

获取原文
获取原文并翻译 | 示例

摘要

With the growth of using cell phones and the increase in the diversity of smart mobile devices, a massive volume of data is generated continuously in the process of using these devices. Among these data, Call Detail Records, CDR, is highly remarkable. Since CDR contains both temporal and spatial labels, mobility analysis of CDR is one of the favorite subjects of study among the researchers. The user next location prediction is one of the main problems in the field of human mobility analysis. In this paper, we propose a regression framework to predict next locations of users of cellular operators. We propose domain-specific data processing strategies and design a deep neural network model which is based on recurrent neurons and performs regression tasks. Using this framework on real-world data, we show that the error of the prediction decreases up to 74% in comparison to the traditional location prediction models. The results of this paper can be helpful in many applications from urban planning and digital marketing to predicting the spread of pandemics.
机译:随着使用手机的增长和智能移动设备的多样性的增加,在使用这些设备的过程中,在使用这些设备的过程中连续产生大量数据。在这些数据中,呼叫详细记录CDR非常显着。由于CDR包含时间和空间标签,因此CDR的移动性分析是研究人员中最受欢迎的研究科目之一。用户下一个位置预测是人类移动性分析领域的主要问题之一。在本文中,我们提出了一个回归框架来预测蜂窝运营商用户的下一个位置。我们提出了特定于域的数据处理策略和设计了一种基于复发神经元的深神经网络模型,并执行回归任务。与现实世界数据一起使用此框架,我们认为与传统的位置预测模型相比,预测的错误降低了高达74%。本文的结果可能有助于城市规划和数字营销的许多应用,以预测流行病的传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号