首页> 外文期刊>Computer networks >UAVs joint optimization problems and machine learning to improve the 5G and Beyond communication
【24h】

UAVs joint optimization problems and machine learning to improve the 5G and Beyond communication

机译:无人机联合优化问题和机器学习,提高5G及超越沟通

获取原文
获取原文并翻译 | 示例

摘要

Recently, unmanned aerial vehicles (UAVs) have gained notable interest in various applications such as wireless coverage, aerial surveillance, precision agriculture, construction, power lines monitoring and blood delivery, etc. The UAVs implicit attributes e.g., rapid deployment, quick mobility, increase in flight duration, improvements in payload capacities, etc. , place it as an effective candidate for many applications in 5G and Beyond communications. The UAVs-assisted next-generation communications are determined to be highly influenced by various techniques and technologies like artificial intelligence (AI), machine learning (ML), deep reinforcement learning (DRL), mobile edge computing (MEC), and software-defined networks (SDN). In this article, we develop a review to investigate the UAVs joint optimization problems to enhance system efficiency. We classify the joint optimization problems based on the number of parameters used in proposed optimization problems. Moreover, we explore the impact of AI, ML, DRL, MEC, and SDN over UAVs joint optimization problems and present future research challenges and directions.
机译:最近,无人驾驶飞行器(无人机)在无线覆盖,空中监控,精密农业,建筑,电力线监测和血液交付等各种应用中获得了显着的兴趣。无人机隐含属性,例如,快速部署,快速移动,增加在飞行期间,有效载荷能力的改进等,将其作为5G及其超出通信的许多应用的有效候选者。确定无人机辅助的下一代通信是由人工智能(AI),机器学习(ML),深加固学习(DRL),移动边缘计算(MEC)等各种技术和技术的高度影响,以及软件定义的网络(SDN)。在本文中,我们开发审查以调查无人机联合优化问题,以提高系统效率。我们根据提出的优化问题中使用的参数数进行分类联合优化问题。此外,我们探讨了AI,ML,DRL,MEC和SDN对无人机联合优化问题的影响,并使未来的研究挑战和方向探讨。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号