首页> 外文期刊>Computer networks >Orchestrating heterogeneous MEC-based applications for connected vehicles
【24h】

Orchestrating heterogeneous MEC-based applications for connected vehicles

机译:编排基于异构的MEC的连接车辆应用

获取原文
获取原文并翻译 | 示例

摘要

In the near future, 5G-connected vehicles will be able to exchange messages with each other, with the roadside infrastructure, with back-end servers, and with the Internet. They will do so with reduced latency, increased relia-bility, and large throughput under high mobility and user density. Different services with different requirements, such as Advanced Driving Assistance (ADA) and High Definition (HD) Video Streaming, will share the same physical resources, such as the wireless channel. Thus, a rigid orchestration among them becomes necessary to prioritize network resource allocation. This study proposes a Connected Vehicle Service Orchestrator (CVSO) which optimizes the Quality of Experience (QoE) of an in-vehicle infotainment video delivery service, while taking into account the required bandwidth for coexisting high priority services, such as ADA. To this end, we pro-vide an Integer Linear Programming (ILP) formulation for the problem of optimally assigning a video streaming bitrate/quality per user to maximize the overall QoE, considering information from the video service and the Ra-dio Access Network (RAN) levels. Our system takes advantage of recent developments in the area of Multi-access Edge Computing (MEC). In particular, we have implemented the CVSO and other service-level components and have deployed them on top of a standards-compliant MEC platform that we have developed. We exploit MEC-native services such as the Radio Network Information Service (RNIS) to offer the CVSO the necessary level of RAN awareness. Experiments on a full LTE network testbed featuring our MEC platform demonstrate the perfor-mance improvements our system brings in terms of video QoE. Furthermore, we propose and evaluate different algorithms to solve the ILP, which exhibit different trade-offs between solution quality and execution time.
机译:在不久的将来,5G连续的车辆将能够将彼此交换消息,路边基础设施,带有后端服务器和互联网。它们将在高迁移率和用户密度下实现降低的延迟,增加的依赖性和吞吐量和大的吞吐量。具有不同要求的不同服务,如高级驾驶辅助(ADA)和高清(HD)视频流,将共享相同的物理资源,例如无线信道。因此,它们之间的刚性编排是优先考虑网络资源分配的必要条件。本研究提出了一种连接的车辆服务协调器(CVSO),其优化了车载信息娱乐视频送视服务的经验(QoE)的质量,同时考虑了用于共存高优先级服务的所需带宽,例如ADA。为此,我们将整数线性编程(ILP)配方提供了用于最佳地分配每个用户的视频流比特率/质量以最大化整体QoE,考虑来自视频服务和RA-DIO接入网络的信息(冉)水平。我们的系统利用了多访问边缘计算区域(MEC)的最新进展。特别是,我们已经实现了CVSO和其他服务级别组件,并在我们开发的标准标准的MEC平台上部署了它们。我们利用MEC-Native Services,例如无线网络信息服务(RNI),以提供CVSO的必要水平RAN感知。专用于我们的MEC平台的完整LTE网络测试平台的实验展示了我们的系统在视频QoE方面带来了完善的改进。此外,我们提出并评估了不同的算法来解决ILP,其在解决方案质量和执行时间之间表现出不同的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号