首页> 外文期刊>Computer networks >Joint source coding rate allocation and flow scheduling for data aggregation in collaborative sensing networks
【24h】

Joint source coding rate allocation and flow scheduling for data aggregation in collaborative sensing networks

机译:协同传感网络中数据聚合的联合源编码率分配和流量调度

获取原文
获取原文并翻译 | 示例

摘要

In collaborative sensing networks such as WSNs (Wireless Sensor Networks), due to overlapping converge areas among neighbor nodes, they may percept a large number of similar or identical data, which incurs sensing data redundancy and unnecessary energy consumption. Slepian-wolf theorem based source coding is an effective method to reduce redundancy in data aggregation. However, the exponential growth of constraints prevent the method from practical application. Therefore, in this paper, we propose a cross-layer optimization framework to solve data aggregation problem by jointly considering optimal source encoding rate and flow scheduling. By proving the convex of constraints of Spelian-Wolf theorem, we relax original constraints so that the optimal encoding rate scheme can be adopted. The relaxation makes the optimization problem feasible. Furthermore, we employ dual decomposition to separate the original problem into two sub-problems. By solving the two subproblem distributedly, we provide optimal encoding rate allocation for each node and flow scheduling for each link. Simulation results demonstrate that our framework can reduce data redundancy and network traffic significantly compared to the exiting algorithms.
机译:在诸如WSNS(无线传感器网络)的协同感测网络中,由于邻居节点中的重叠区域,它们可以感知大量类似或相同的数据,其引起感测数据冗余和不必要的能量消耗。基于睡莲定理的源编码是减少数据聚合中冗余的有效方法。然而,约束的指数增长防止了方法实际应用。因此,在本文中,我们提出了一种跨层优化框架来解决数据聚合问题,通过共同考虑最佳源编码率和流量调度来解决数据聚合问题。通过证明Spelian-Wolf定理的约束,我们放宽原始约束,以便采用最佳编码率方案。放松使优化问题可行。此外,我们使用双重分解将原始问题分解为两个子问题。通过求解两个分布的子问题,我们为每个节点提供最佳的编码率分配和每个链路的流量调度。仿真结果表明,与退出算法相比,我们的框架可以显着降低数据冗余和网络流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号