首页> 外文期刊>Computer networks >A NSGA2-LR wrapper approach for feature selection in network intrusion detection
【24h】

A NSGA2-LR wrapper approach for feature selection in network intrusion detection

机译:一种用于网络入侵检测中的特征选择的NSGA2-LR包装器方法

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is becoming a major preprocessing phase in which irrelevant and redundant features are removed, while the more informative ones are retained. The datasets used in intrusion detection systems contain many features. It is, therefore, necessary to apply a feature selection step to improve the classification performance and reduce the computation time. In this paper, we propose a multi-objective feature selection approach based on NSGA-II and logistic regression in network intrusion detection. The proposed wrapper approach is tested according to two schemes: the first uses binomial logistic regression with many binary-class datasets corresponding to each type of attack, and the second uses multinomial logistic regression with a multi-class dataset. The best obtained subsets are tested using three different decision tree classifiers namely C4.5 decision tree, Random Forest, and Naive Bayes Tree. Three datasets are used in experiments namely NSL-KDD dataset, UNSW-NB15 dataset, and CIC-IDS2017. The obtained results show better accuracy when using binary-class datasets compared to multi-class datasets. Furthermore, the two schemes for feature selection succeed in reducing the features space by removing irrelevant features and keeping only the most informative ones. The obtained results are promising compared to other approaches.
机译:特征选择正在成为一个主要的预处理阶段,在该阶段中,不相关的特征和多余的特征将被删除,而信息量更大的特征将被保留。入侵检测系统中使用的数据集包含许多功能。因此,有必要应用特征选择步骤来改善分类性能并减少计算时间。本文提出了一种基于NSGA-II和Logistic回归的网络入侵检测多目标特征选择方法。所提出的包装方法是根据两种方案进行测试的:第一种使用二项式逻辑回归与对应于每种攻击类型的许多二元类数据集,第二种使用多项式逻辑回归与多类数据集。使用三个不同的决策树分类器(即C4.5决策树,随机森林和朴素贝叶斯树)测试获得最佳的子集。实验中使用了三个数据集,即NSL-KDD数据集,UNSW-NB15数据集和CIC-IDS2017。与使用多类数据集相比,使用二进制类数据集时获得的结果显示出更好的准确性。此外,两种用于特征选择的方案通过删除不相关的特征并仅保留最有用的特征,成功减少了特征空间。与其他方法相比,获得的结果很有希望。

著录项

  • 来源
    《Computer networks》 |2020年第may8期|107183.1-107183.18|共18页
  • 作者

  • 作者单位

    Univ Tunis Inst Super Gest Tunis LARODEC Lab 41 Rue Liberte Le Bardo 2000 Tunisia|Univ Carthage Inst Super Gest Bizerte Bizerte 7035 Tunisia;

    Univ Tunis Inst Super Gest Tunis LARODEC Lab 41 Rue Liberte Le Bardo 2000 Tunisia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Intrusion detection systems; Feature selection; Multi-objective optimisation;

    机译:入侵检测系统;功能选择;多目标优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号