首页> 外文期刊>Computer networks >Full encapsulation or internal buffering in OpenFlow based hardware switches?
【24h】

Full encapsulation or internal buffering in OpenFlow based hardware switches?

机译:在基于OpenFlow的硬件交换机中是完全封装还是内部缓冲?

获取原文
获取原文并翻译 | 示例

摘要

Software-Defined Networking (SDN) enables programmability in the network through a software dependent control function. OpenFlow is a de-facto protocol for communication between an SDN switch and the controller. OpenFlow specifications generally allow two methods for packet encapsulation of data packets at the switch that require decisions from the controller, (a) full encapsulation, and (b) internal buffering. However, full encapsulation of data packets has been the default choice for packet processing, and internal buffering has not been explored much, especially for hardware switching. In this paper, we model and analyse the effect of internal buffering on the performance of an OpenFlow hardware switch. We compare queueing models for the switch with full encapsulation and internal buffering for hardware switching. The results show that internal buffering significantly reduces the average packet transfer delay by 85% and packet loss probability by 60%. The results further provide guidelines to network operators that internal buffering for hardware switching is useful for controllers with lower processing rates, especially in delay-sensitive applications running over SDN. For loss-sensitive applications running over SDN, the full encapsulation method is more robust handling flows with a high table miss probability. (C) 2019 Elsevier B.V. All rights reserved.
机译:软件定义网络(SDN)通过依赖软件的控制功能实现网络中的可编程性。 OpenFlow是用于SDN交换机和控制器之间通信的事实上的协议。 OpenFlow规范通常允许使用两种方法来对交换机上的数据包进行数据包封装,这需要控制器做出决定,(a)完全封装,以及(b)内部缓冲。但是,数据包的完全封装已成为数据包处理的默认选择,并且内部缓冲还没有得到太多研究,特别是对于硬件交换。在本文中,我们对内部缓冲对OpenFlow硬件交换机的性能的影响进行建模和分析。我们将交换机的排队模型与完整的封装和内部缓冲进行硬件切换的比较。结果表明,内部缓冲可将平均数据包传输延迟降低85%,并将数据包丢失概率降低60%。结果进一步为网络运营商提供了指南,即用于硬件交换的内部缓冲对于处理速率较低的控制器非常有用,尤其是在基于SDN的对延迟敏感的应用程序中。对于在SDN上运行的对丢失敏感的应用程序,完整的封装方法具有更高的表丢失概率,因此处理流程更健壮。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号