首页> 外文期刊>Computer networks >Energy efficient resource allocation based on relay selection and subcarrier pairing with channel uncertainty in cognitive radio network
【24h】

Energy efficient resource allocation based on relay selection and subcarrier pairing with channel uncertainty in cognitive radio network

机译:认知无线电网络中基于中继选择和子载波配对且信道不确定的节能资源分配

获取原文
获取原文并翻译 | 示例

摘要

More and more mobile devices join in the wireless networks, it has become a challenging problem how to mitigating the interferences and improving the energy efficiency in dynamic wireless communication environment. In this paper, a robust resource allocation algorithm is proposed to maximize the energy efficiency (EE) in a multi-carrier decode-and-forward (DF) cognitive radio(CR) relay network, which subjects to multiple constraints in aspects of relay transmit power, signal to noise ratio threshold, subcarrier pairing, relay selection and the primary user's minimum transmit rate requirement. The original optimization problem is non-convex with consideration of the channel uncertainty, and it is the mixed binary integer programming problem. Subsequently, we use the worst-case method to deal with channel uncertainty and convert the original non-convex problem into a quasi-concave problem by the Dinkelbach method. We solve the NP-hard problem in two steps: fixing the subcarriers to get the optimal relay selection and allocating the subcarriers according to the optimal relay selection. By using the method of dual decomposition, we get the approximate optimal solution of the problem. Simulation results show that the proposed joint resource allocation scheme guarantees the desired service quality requirements, and the energy-efficiency obtained is improved comparing with some existing works. In addition, the proposed resource allocation algorithm shows better convergence performance under different topologies, which validates the resource allocation scheme has good scalability. (C) 2019 Elsevier B.V. All rights reserved.
机译:越来越多的移动设备加入无线网络,如何在动态无线通信环境中减轻干扰并提高能效已成为一个具有挑战性的问题。本文提出了一种鲁棒的资源分配算法,以最大化多载波解码转发(DF)认知无线电(CR)中继网络中的能量效率(EE),该中继网络在中继传输方面受到多种约束功率,信噪比阈值,子载波配对,中继选择以及主要用户的最低传输速率要求。考虑信道不确定性,最初的优化问题是非凸的,它是混合二进制整数规划问题。随后,我们使用最坏情况方法处理通道不确定性,并通过Dinkelbach方法将原始的非凸问题转换为准凹问题。我们分两个步骤解决NP-hard问题:固定子载波以获得最佳中继选择,并根据最佳中继选择分配子载波。通过对偶分解的方法,我们得到了问题的近似最优解。仿真结果表明,所提出的联合资源分配方案能够满足期望的服务质量要求,与现有的一些工作相比,能效得到了提高。另外,所提出的资源分配算法在不同的拓扑结构下都具有较好的收敛性能,这证明该资源分配方案具有良好的可扩展性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号