首页> 外文期刊>Computer networks >Augmenting content-based rating prediction with link stream features
【24h】

Augmenting content-based rating prediction with link stream features

机译:利用链接流功能增强基于内容的收视率预测

获取原文
获取原文并翻译 | 示例

摘要

While graph-based collaborative filtering recommender systems have been introduced several years ago, there are still several shortcomings to deal with, the temporal information being one of the most important. The new link stream paradigm is aiming at extending graphs for correctly modelling the graph dynamics, without losing crucial information. We investigate the impact of such link stream features for recommender systems. We design link stream features, that capture the intrinsic structure and dynamics of the data. We show that such features encode a fine-grained and subtle description of the underlying system. We focused on a traditional recommender system context, the rating prediction on the Movie-Lens20M movie dataset and the Goodreads book dataset. We input link stream features along with some content-based ones into a gradient boosting machine (XGBoost) and show that itoutperforms significantly a sole content-based solution. These encouraging results call for further exploration of this original modelling and its integration to complete state-of-the-art recommender systems algorithms. Link streams and graphs, as natural visualizations of recommender systems, may offer more interpretability in a time when algorithm transparency is an increasingly important topic of discussion. We also hope that these results will sparkle interesting discussions in the community about the connections between link streams and traditional methods (matrix factorization, deep learning). (C) 2018 Elsevier B.V. All rights reserved.
机译:尽管几年前引入了基于图的协作过滤推荐系统,但仍然存在一些不足之处,时间信息是最重要的信息之一。新的链接流范例旨在扩展图以正确地对图动力学建模,而不会丢失关键信息。我们研究了此类链接流功能对推荐系统的影响。我们设计链接流功能,以捕获数据的固有结构和动态。我们证明了这样的功能编码了对底层系统的细粒度和微妙的描述。我们专注于传统的推荐系统背景,Movie-Lens20M电影数据集和Goodreads图书数据集的收视率预测。我们将链接流功能以及一些基于内容的功能输入到梯度提升机(XGBoost)中,并显示出其性能明显优于唯一的基于内容的解决方案。这些令人鼓舞的结果要求进一步探索这种原始建模及其与完整的最新推荐系统算法的集成。链接流和图,作为推荐系统的自然可视化,可以在算法透明性成为越来越重要的讨论主题时提供更多的可解释性。我们还希望这些结果能引起社区中有关链接流与传统方法(矩阵分解,深度学习)之间的联系的有趣讨论。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号