首页> 外文期刊>Computer networks >Approach of personnel location in roadway environment based on multi-sensor fusion and activity classification
【24h】

Approach of personnel location in roadway environment based on multi-sensor fusion and activity classification

机译:基于多传感器融合和活动分类的巷道环境人员定位方法

获取原文
获取原文并翻译 | 示例

摘要

For the demands of localization system in underground mines, accuracy and generalized ability are the key indicators to evaluate the performance of the location algorithm, which directly affect the reliability and perception performance of the safety monitoring system. Since the irregular tunnel environment is dusty, humid and noisy, the reliability and generalized ability of the localization wireless network is an urgent and challenging problem. In this paper, multiple kinds of sensors are used to collect the data and the fusion mechanism is designed to improve the robustness of the location method. Considering the prior knowledge of the environment, a reliable activity classification method based on the Random Forest (RF) along with wireless Round-trip Time of Flight (RToF) technology to calibrate the accumulative error is proposed, which confirms the special position by matching with the known map of the underground. The positioning strategy with multiple sensors fusion enables the localization system adapting to kinds of harsh tunnel environment. The activity recognition performance is evaluated and numerical results indicate that the accuracy can reach more than 97%. Additionally, according to the simulation and experimental results, the impact of outside interference on the proposed method is substantially mitigated. The results demonstrate that the proposed method for localization system is practically feasible. (C) 2018 Elsevier B.V. All rights reserved.
机译:针对地下矿井定位系统的需求,精度和综合能力是评估定位算法性能的关键指标,直接影响安全监控系统的可靠性和感知性能。由于不规则的隧道环境是尘土飞扬,潮湿且嘈杂的,因此定位无线网络的可靠性和普遍性是一个迫切且具有挑战性的问题。在本文中,使用多种传感器收集数据,并设计了融合机制以提高定位方法的鲁棒性。考虑到环境的先验知识,提出了一种基于随机森林(RF)和无线往返飞行时间(RToF)技术的可靠的活动分类方法来校准累积误差,该方法通过匹配来确定特殊位置已知的地下地图。多传感器融合的定位策略使定位系统能够适应各种恶劣的隧道环境。评估了活动识别性能,数值结果表明准确率可以达到97%以上。另外,根据仿真和实验结果,大大减轻了外界干扰对所提方法的影响。结果表明,所提出的定位系统方法是切实可行的。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号