首页> 外文期刊>Computer networks >On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of Internet traffic
【24h】

On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of Internet traffic

机译:Internet流量分析中基于Hurst参数估计的小波谱诊断

获取原文
获取原文并翻译 | 示例

摘要

The fluctuations of Internet traffic possess an intricate structure which cannot be simply explained by long-range dependence and self-similarity. In this work, we explore the use of the wavelet spectrum, whose slope is commonly used to estimate the Hurst parameter of long-range dependence. We show that much more than simple slope estimates are needed for detecting important traffic features. In particular, the multi-scale nature of the traffic does not admit simple description of the type attempted by the Hurst parameter. By using simulated examples, we demonstrate the causes of a number of interesting effects in the wavelet spectrum of the data. This analysis leads us to a better understanding of several challenging phenomena observed in real network traffic. Although the wavelet analysis is robust to many smooth trends, high-frequency oscillations and non-stationa-rities such as abrupt changes in the mean have an important effect. In particular, the breaks and level-shifts in the local mean of the traffic rate can lead one to overestimate the Hurst parameter of the time series. Novel statistical techniques are required to address such issues in practice.
机译:Internet流量的波动具有复杂的结构,不能简单地通过长期依赖性和自相似性来解释。在这项工作中,我们探索了小波谱的使用,小波谱的斜率通常用于估计长期依赖的赫斯特参数。我们表明,检测重要的交通特征所需的不仅仅是简单的坡度估计。特别是,流量的多尺度性质不允许对Hurst参数尝试的类型进行简单描述。通过使用模拟示例,我们演示了数据小波谱中许多有趣影响的原因。这种分析使我们对实际网络流量中观察到的一些具有挑战性的现象有了更好的了解。尽管小波分析对许多平滑趋势均具有鲁棒性,但高频振荡和非平稳性(例如均值的突然变化)仍具有重要作用。特别是,流量速率的本地均值的中断和水平移动会导致人们高估时间序列的Hurst参数。在实践中需要新颖的统计技术来解决此类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号