首页> 外文期刊>Computer networks >Distributed classification of acoustic targets in wireless audio-sensor networks
【24h】

Distributed classification of acoustic targets in wireless audio-sensor networks

机译:无线音频传感器网络中声学目标的分布式分类

获取原文
获取原文并翻译 | 示例

摘要

Target tracking is an important application for wireless sensor networks. One important aspect of tracking is target classification. Classification helps in selecting particular targets) of interest. In this paper, we address the problem of classification of moving ground vehicles. The basis of classification are the audible signals produced by these vehicles. We present a distributed framework to classify vehicles based on features extracted from acoustic signals of vehicles. The main features used in our study are based on FFT (fast Fourier transform) and PSD (power spectral density). We propose three distributed algorithms for classification that are based on the k-nearest neighbor (k-NN) classification method. An experimental study has been conducted using real acoustic signals of different vehicles recorded in the city of Edmonton. We compare our proposed algorithms with a naive distributed implementation of the k-NN algorithm. Performance results reveal that our proposed algorithms are energy efficient, and thus suitable for sensor network deployment.
机译:目标跟踪是无线传感器网络的重要应用。跟踪的一个重要方面是目标分类。分类有助于选择感兴趣的特定目标。在本文中,我们解决了移动地面车辆的分类问题。分类的基础是这些车辆产生的声音信号。我们提出了一个分布式框架,可根据从车辆声信号中提取的特征对车辆进行分类。我们研究中使用的主要功能是基于FFT(快速傅立叶变换)和PSD(功率谱密度)的。我们提出了三种基于k最近邻(k-NN)分类方法的分布式分类算法。已经使用埃德蒙顿市记录的不同车辆的真实声音信号进行了实验研究。我们将我们提出的算法与k-NN算法的幼稚分布式实现进行了比较。性能结果表明,我们提出的算法具有高能效,因此适合传感器网络部署。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号