首页> 外文期刊>Computer networks >Sampling networks by the union of m shortest path trees
【24h】

Sampling networks by the union of m shortest path trees

机译:通过m个最短路径树的联合来进行采样网络

获取原文
获取原文并翻译 | 示例

摘要

Many network topology measurements capture or sample only a partial view of the actual network structure, which we call the underlying network. Sampling bias is a critical problem in the field of complex networks ranging from biological networks, social networks and artificial networks like the Internet. This bias phenomenon depends on both the sampling method of the measurements and the features of the underlying networks. In RIPE NCC and the PlanetLab measurement architectures, the Internet is mapped as G_(UmSpt), the union of shortest paths between each pair of a set .M of m testboxes, or equivalently, m shortest path trees. In this paper, we investigate this sampling method on a wide class of real-world complex networks as well as on the weighted Erd6s-Renyi random graphs. This general framework examines the effect of the set of testboxes on G_(UmSpt). We establish the correlation between the subgraph G_M of the underlying network, i.e. the set ,M and the direct links between nodes of set M, and the sampled network G_(UmSpt),. Furthermore, we illustrate that in order to obtain an increasingly accurate view of a given network, a higher than linear detection/measuring effort (the relative size m/N of set M) is needed, where N is the size of the underlying network. Finally, when the relative size m/N of set .M is small, we characterize the kind of networks possessing small sampling bias, which provides insights on how to place the testboxes for good network topology measurement.
机译:许多网络拓扑测量仅捕获或采样实际网络结构的部分视图,我们称其为基础网络。采样偏差是复杂网络领域中的一个关键问题,这些复杂网络涉及生物网络,社交网络以及诸如Internet之类的人工网络。这种偏差现象取决于测量的采样方法和基础网络的特征。在RIPE NCC和PlanetLab测量体系结构中,Internet映射为G_(UmSpt),这是一组m个测试箱中每对之间的最短路径的并集,或者等效地,m个最短路径树。在本文中,我们将在广泛的现实世界中的复杂网络以及加权的Erd6s-Renyi随机图上研究这种采样方法。这个通用框架检查了测试箱集对G_(UmSpt)的影响。我们在基础网络的子图G_M(即集合M)与集合M的节点之间的直接链接与采样网络G_(UmSpt)之间建立了相关性。此外,我们说明,为了获得给定网络的越来越精确的视图,需要比线性检测/测量工作(集合M的相对大小m / N)更高的工作,其中N是基础网络的大小。最后,当集合.M的相对大小m / N小时,我们表征了具有较小采样偏差的网络,这为如何放置测试盒以进行良好的网络拓扑测量提供了见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号