首页> 外文期刊>Computer networks >Evolutionary algorithms for orthogonal frequency division multiplexing-based dynamic spectrum access systems
【24h】

Evolutionary algorithms for orthogonal frequency division multiplexing-based dynamic spectrum access systems

机译:基于正交频分复用的动态频谱接入系统的进化算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes two evolutionary algorithms (EAs) to perform dynamic spectrum assignment in distributed OFDM-based cognitive radio access networks. To achieve better radio resource utilization, the central spectrum manager (CSM) jointly considers the type of modulation level which can be used by each radio pair when deciding the number of subcarriers to be assigned. Using the piecewise convex transformations, we reformulate the nonlinear integer programming problem to an integer linear programming so that it is possible to obtain the optimal solution. While the solution to the integer linear programming problem is NP-hard, the proposed EAs provide useful suboptimal solutions especially when the number of radios and subcarriers are large. Our first proposed EA adopts the genetic algorithm. Although the reproduction process generates chromosomes which do not fulfill the constraints, our algorithm integrates the invisible walls technique used in particle swam optimization to retain the diversity while constructing chromosomes for the next generation. The second EA adopts the ant colony optimization approach using a directed multigraph. The vertices are used to represent the subcarriers and each edge corresponds to a possible chosen modulation index of a specific radio. We further obtain the performance of the two EAs through simulations and benchmark them against the optimal solution. Our studies show that ant colony algorithm gives better solutions most of the time, however, its computation time increases much faster compared to generic algorithm when the numbers of users and subcarriers increase.
机译:本文提出了两种进化算法(EA)在基于OFDM的分布式认知无线电接入网络中执行动态频谱分配。为了实现更好的无线电资源利用,中央频谱管理器(CSM)共同考虑在确定要分配的子载波数量时每个无线电对可以使用的调制级别类型。使用分段凸变换,我们将非线性整数规划问题重新格式化为整数线性规划,从而有可能获得最优解。尽管整数线性规划问题的解决方案是NP-hard,但建议的EA提供了有用的次优解决方案,尤其是在无线电和子载波的数量很大时。我们首先提出的EA采用了遗传算法。尽管繁殖过程产生的染色体不满足约束条件,但我们的算法集成了粒子游动优化中使用的不可见墙技术,以保留多样性,同时为下一代构建染色体。第二个EA采用有向多图的蚁群优化方法。顶点用于表示子载波,每个边缘对应于特定无线电的可能选择的调制指数。我们通过仿真进一步获得了两个EA的性能,并针对最佳解决方案对它们进行了基准测试。我们的研究表明,蚁群算法在大多数时间提供了更好的解决方案,但是,当用户和副载波数量增加时,其计算时间比通用算法要快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号