首页> 外文期刊>Computer networks >A generalizable dynamic flow pairing method for traffic classification
【24h】

A generalizable dynamic flow pairing method for traffic classification

机译:一种通用的流分类动态流配对方法

获取原文
获取原文并翻译 | 示例

摘要

The goal of network traffic classification is to identify the protocols or types of protocols in the network traffic. In particular, the identification of network traffic with high resource consumption, such as peer-to-peer (P2P) traffic, represents a great concern for Internet Service Providers (ISP) and network managers. Most current flow-based classification approaches report high accuracy without paying attention to the generalization ability of the classifier. However, without this ability, a classifier may not be suitable for on-line classification. In this paper, a number of experiments on real traffic help to elucidate the reason for this lack of generalization. It is also shown that one way to attain the generalization ability is by using dynamic classifiers. From these results, a dynamic classification approach based on the pairing of flows according to a similarity criterion is proposed. The pairing method is not a classifier by itself. Rather, its goal is to determine in a fast way that two given flows are similar enough to conclude they correspond to the same protocol. Combining this method with a classifier, most of the flows do not need to be explicitly evaluated by the later, so that the computational overhead is reduced without a significant reduction in accuracy. In this paper, as a case study, we explore complementing the pairing method with payload inspection. In the experiments performed, the pairing approach generalizes well to traffic obtained in different conditions and scenarios than that used for calibration. Moreover, a high portion of the traffic unclassified by payload inspection is categorized with the pairing method.
机译:网络流量分类的目的是识别网络流量中的协议或协议类型。尤其是,对具有高资源消耗的网络流量(例如对等(P2P)流量)的识别代表Internet服务提供商(ISP)和网络管理者的极大关注。当前大多数基于流的分类方法都报告了很高的准确性,而没有关注分类器的泛化能力。但是,没有这种能力,分类器可能不适合在线分类。在本文中,对真实流量进行的大量实验有助于阐明这种缺乏概括性的原因。还显示了一种获得泛化能力的方法是使用动态分类器。根据这些结果,提出了一种基于相似性准则的流对的动态分类方法。配对方法本身不是分类器。相反,其目标是快速确定两个给定的流足够相似,以得出它们对应于同一协议的结论。将该方法与分类器结合使用,大多数流程无需稍后再进行显式评估,因此可以在不显着降低准确性的情况下减少计算开销。在本文中,作为案例研究,我们探索了用有效载荷检查补充配对方法。在进行的实验中,配对方法可以很好地推广到在与校准不同的条件和场景下获得的流量。此外,通过有效载荷检查未分类的大部分流量都使用配对方法进行分类。

著录项

  • 来源
    《Computer networks》 |2013年第14期|2718-2732|共15页
  • 作者单位

    Department of Signal Theory, Telematics and Communication, Research Center of Information and Communication Technologies, University of Granada, Granada, Spain;

    Department of Signal Theory, Telematics and Communication, Research Center of Information and Communication Technologies, University of Granada, Granada, Spain;

    Department of Signal Theory, Telematics and Communication, Research Center of Information and Communication Technologies, University of Granada, Granada, Spain;

    Department of Signal Theory, Telematics and Communication, Research Center of Information and Communication Technologies, University of Granada, Granada, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Traffic classification; Peer-to-peer; Flow; Pairing;

    机译:交通分类;点对点;流;配对;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号