首页> 外文期刊>Computer networks >EFFORT: A new host-network cooperated framework for efficient and effective bot malware detection
【24h】

EFFORT: A new host-network cooperated framework for efficient and effective bot malware detection

机译:EFFORT:一种新的主​​机网络协作框架,可高效,高效地检测机器人恶意软件

获取原文
获取原文并翻译 | 示例

摘要

Bots are still a serious threat to Internet security. Although a lot of approaches have been proposed to detect bots at host or network level, they still have shortcomings. Host-level approaches can detect bots with high accuracy. However they usually pose too much overhead on the host. While network-level approaches can detect bots with less overhead, they have problems in detecting bots with encrypted, evasive communication C&C channels. In this paper, we propose EFFORT, a new host-network cooperated detection framework attempting to overcome shortcomings of both approaches while still keeping both advantages, i.e., effectiveness and efficiency. Based on intrinsic characteristics of bots, we propose a multi-module approach to correlate information from different host- and network-level aspects and design a multi-layered architecture to efficiently coordinate modules to perform heavy monitoring only when necessary. We have implemented our proposed system and evaluated on real-world benign and malicious programs running on several diverse real-life office and home machines for several days. The final results show that our system can detect all 17 real-world bots (e.g., Waledac, Storm) with low false positives (0.68%) and with minimal overhead. We believe EFFORT raises a higher bar and this host-network cooperated design represents a timely effort and a right direction in the malware battle.
机译:僵尸程序仍然是对Internet安全的严重威胁。尽管已经提出了许多在主机或网络级别检测Bot的方法,但是它们仍然存在缺陷。主机级方法可以高精度检测机器人。但是,它们通常会给主机带来过多的开销。尽管网络级方法可以以更少的开销检测到僵尸程序,但是它们在检测带有加密的,逃避的通信C&C通道的僵尸程序时会遇到问题。在本文中,我们提出了EFFORT,这是一种新的主​​机网络协作检测框架,旨在克服这两种方法的缺点,同时仍保留两种优势,即有效性和效率。根据僵尸程序的固有特性,我们提出了一种多模块方法来关联来自主机和网络级别不同方面的信息,并设计了多层体系结构以有效地协调模块以仅在必要时执行繁重的监视。我们已经实施了我们提出的系统,并在运行于多种现实办公和家用计算机上的真实良性和恶意程序上进行了几天的评估。最终结果表明,我们的系统可以检测到所有17种真实世界的机器人(例如Waledac,Storm),它们具有较低的误报率(0.68%)并且开销很小。我们相信EFFORT提出了更高的要求,这种主机网络协作的设计代表了及时的努力,并在恶意软件斗争中指明了正确的方向。

著录项

  • 来源
    《Computer networks》 |2013年第13期|2628-2642|共15页
  • 作者单位

    Texas A&M University, College Station, Texas, United States;

    Texas A&M University, College Station, Texas, United States;

    Texas A&M University, College Station, Texas, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Botnet; Botnet detection; Network security;

    机译:僵尸网络;僵尸网络检测;网络安全;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号