首页> 外文期刊>Computer networks >An efficient resource discovery framework for pure unstructured peer-to-peer systems
【24h】

An efficient resource discovery framework for pure unstructured peer-to-peer systems

机译:用于纯非结构化对等系统的有效资源发现框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an efficient resource discovery framework allowing pure unstructured peer-to-peer systems to respond to requests at run time with a high success rate while preserving the local autonomy of member machines. There are five units in the proposed framework that respectively gather information about the status of resources, make decisions, detect the states of member machines, discover resources to respond to requests in normal and dynamic conditions, and balance the load of local machines. Efficient resource discovery is achieved by the deployment of a newly introduced mechanism that is placed on every machine allowing it to figure out its states before and after accepting other machines' requests for its resources using a state model and deciding whether to accept or reject those requests. This state model accurately estimates the machine's state based on the resources and processes of the machine before and after accepting the request. We have experimentally compared the proposed mechanism with random, learning-based, and state-based search mechanisms with regard to the number of missed requests, network bandwidth due to transferred messages, number of associated machines in a discovery operation, time required to process information in discovery operation, processing time in machines, and the number of faults per request. The results show significant improvement of some of these parameters, specially network bandwidth and the number of missed requests in a dynamic condition, under our framework.
机译:在本文中,我们提出了一个有效的资源发现框架,该框架允许纯净的非结构化对等系统在运行时以高成功率响应请求,同时保留成员计算机的本地自治权。提议的框架中有五个单元,分别收集有关资源状态的信息,做出决策,检测成员计算机的状态,发现资源以在正常和动态条件下响应请求并平衡本地计算机的负载。通过在每台机器上部署新引入的机制来实现有效的资源发现,该机制允许它使用状态模型在接受其他机器对其资源的请求之前和之后找出其状态,并确定是接受还是拒绝这些请求。此状态模型根据接受请求之前和之后的机器资源和进程来准确估算机器状态。我们通过实验比较了提议的机制与随机,基于学习和基于状态的搜索机制,这些机制涉及遗漏的请求数,由于传输的消息导致的网络带宽,发现操作中关联机器的数量,处理信息所需的时间发现操作中的时间,机器中的处理时间以及每个请求的故障数。结果表明,在我们的框架下,这些参数中的一些参数有了显着改善,特别是网络带宽和动态情况下的丢失请求数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号