首页> 外文期刊>Computer networks >An outlier mining-based malicious node detection model for hybrid P2P networks
【24h】

An outlier mining-based malicious node detection model for hybrid P2P networks

机译:混合P2P网络中基于异常的基于挖掘的恶意节点检测模型

获取原文
获取原文并翻译 | 示例

摘要

With the increases of P2P applications and their users, the malicious attacks also increased significantly, which negatively impacts on the availability of the P2P networks and their users' experience. This paper presents an outlier mining-based malicious node detection model for hybrid P2P networks. We first extract the local nodes' frequent patterns from the nodes' behavior patterns in subnets using the frequent behavior pattern mining approach, and then we produce and update the nodes' global frequent behavior patterns by incrementally propagating and aggregating the local frequent behavior patterns. Finally, we identify outliers (i.e. the malicious nodes) using the local frequent behavior patterns and the global frequent behavior patterns. We also discuss how to recognize the different types of malicious nodes from outliers. Simulation results show that our strategy could detect malicious nodes with low false positive rate and low false negative rate. (C) 2016 Elsevier B.V. All rights reserved.
机译:随着P2P应用程序及其用户的增加,恶意攻击也显着增加,这对P2P网络的可用性及其用户体验产生了负面影响。本文提出了一种基于异常挖掘的混合P2P网络恶意节点检测模型。我们首先使用频繁行为模式挖掘方法从子网中节点的行为模式中提取本地节点的频繁模式,然后通过增量传播和聚合本地频繁行为模式来生成和更新节点的全局频繁行为模式。最后,我们使用局部频繁行为模式和全局频繁行为模式来识别异常值(即恶意节点)。我们还将讨论如何从异常值中识别出不同类型的恶意节点。仿真结果表明,该策略可以检测出假阳性率低,假阴性率低的恶意节点。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号