首页> 外文期刊>Computer networks >Pipelined hierarchical architecture for high performance packet classification
【24h】

Pipelined hierarchical architecture for high performance packet classification

机译:流水线式分层架构,用于高性能数据包分类

获取原文
获取原文并翻译 | 示例

摘要

Hierarchical search structures satisfying good memory and update performance demands, are encouraging solution for packet classification in multi-core processors. However, pipelined hardware implementation of these algorithms has two major issues: (1) backtracking which causes stalling the pipeline and (2) memory inefficiency owing to variation in the size of trie nodes. In this paper, we present a clustering algorithm named recursive leaf extraction (RLE) that partitions an input ruleset into a certain number of sub-rulesets to eradicate backtracking in hierarchical search structures. We further enhanced RLE method and proposed Optimized-RLE (O-RLE) algorithm to balance the size of clusters. Additionally, we present a ternary trie data structure (T-epsilon) that takes the advantage of epsilon-branch property to segment large trie nodes into fixed size epsilon-nodes to solve the memory inefficiency problem. We propose two hierarchical data structures denoted Tree-Trie(epsilon) (TT epsilon)and its extended version Tree-Trie(epsilon)-Linked List (TT epsilon L). TT epsilon consists of a binary search tree in Stage 1 and multiple T-epsilon structures in Stage 2. TT epsilon L comprises an additional linked-list (LL) data structure in Stage 3 that maintains the large portion of a nodes and thus freely optimizes search delay with a significant improvement in memory efficiency (20.39 bytes/rule). To accommodate the proposed data structures, we designed high throughput SRAM-based parallel and pipelined architectures on Field Programmable Gate Arrays (FPGAs) (134 Gbps). (C) 2016 Elsevier B.V. All rights reserved.
机译:满足良好内存和更新性能要求的分层搜索结构正在为多核处理器中的数据包分类提供令人鼓舞的解决方案。但是,这些算法的流水线硬件实现有两个主要问题:(1)回溯导致流水线停顿;(2)由于trie节点大小的变化,导致内存效率低下。在本文中,我们提出了一种称为递归叶提取(RLE)的聚类算法,该算法将输入规则集划分为一定数量的子规则集,以消除分层搜索结构中的回溯。我们进一步增强了RLE方法,并提出了Optimized-RLE(O-RLE)算法来平衡簇的大小。此外,我们提出了一种三元特里数据结构(T-epsilon),该结构利用epsilon分支属性将大型特里节点分成固定大小的epsilon节点,以解决内存效率低下的问题。我们提出了两个分层的数据结构,分别表示为Tree-Trie(epsilon)(TT epsilon)及其扩展版本Tree-Trie(epsilon)链表(TT epsilon L)。 TT epsilon在阶段1中包含一个二进制搜索树,在阶段2中包含多个T-epsilon结构。TTepsilon L在阶段3中包含一个附加的链表(LL)数据结构,该结构维护节点的大部分,因此可以自由地进行优化搜索延迟,显着提高了存储效率(20.39字节/规则)。为了适应提议的数据结构,我们在现场可编程门阵列(FPGA)(134 Gbps)上设计了基于SRAM的高吞吐量并行和流水线架构。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号