首页> 外文期刊>Computer networks >Real-time spectrum occupancy monitoring using a probabilistic model
【24h】

Real-time spectrum occupancy monitoring using a probabilistic model

机译:使用概率模型实时频谱占用率监控

获取原文
获取原文并翻译 | 示例

摘要

The scarcity of the radio spectrum has motivated a search for more optimal and efficient spectrum management methods. One of these methods is spectrum sharing, which multiplies the number of devices that can use this resource without causing harmful interference to licensees. Spectrum sharing requires spectrum scanning to gain awareness of the spectrum occupancy patterns and decide how to allocate access to this resource. This process has been traditionally done by sensing the channel to determine its state, occupied or empty, and then using frequentist inference to estimate the channel occupancy. However, frequentist inference does not handle uncertainty and does not take into account the probabilities of false alarm and detection when estimating the channel occupancy rate. On the other hand, Bayesian inference can handle uncertainty by considering the impact of these parameters on spectrum sensing results. Additionally, it is possible to include previous knowledge into the construction of Bayesian models to learn and make decision under uncertainty. In this paper, we propose a spectrum scanning method, Bayesian inference, to estimate the channel occupancy rate. One advantage of this method is that it takes into consideration the probabilities of false alarm and detection of the spectrum sensor. This feature makes the estimation of the channel occupancy rate more accurate. (C) 2017 Elsevier B.V. All rights reserved.
机译:无线电频谱的稀缺性促使人们寻求更优化,更有效的频谱管理方法。这些方法之一是频谱共享,它使可以使用此资源的设备数量成倍增加,而不会对被许可方造成有害干扰。频谱共享需要进行频谱扫描以了解频谱占用模式并决定如何分配对此资源的访问。传统上,此过程是通过感测通道以确定其状态(占用或空),然后使用频繁推断来估计通道占用率来完成的。但是,频繁推断不能处理不确定性,并且在估计信道占用率时未考虑错误警报和检测的可能性。另一方面,贝叶斯推断可以通过考虑这些参数对频谱感测结果的影响来处理不确定性。此外,可以将先前的知识包括在贝叶斯模型的构造中,以在不确定性下学习和做出决策。在本文中,我们提出一种频谱扫描方法,即贝叶斯推断,以估计信道占用率。这种方法的一个优点是,它考虑了误报警和频谱传感器检测的可能性。此功能使对信道占用率的估计更加准确。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号