首页> 外文期刊>Computer networks >Adaptive resource allocation with traffic peak duration prediction and admission control for cognitive Wi-Fi networks
【24h】

Adaptive resource allocation with traffic peak duration prediction and admission control for cognitive Wi-Fi networks

机译:具有认知高峰期Wi-Fi网络的流量峰值持续时间预测和接纳控制的自适应资源分配

获取原文
获取原文并翻译 | 示例

摘要

Cognitive radio network (CRN) architecture can be efficiently utilized to support different QoS requirements under variable traffic and channel conditions. Generally, deterministic radio resource allocation algorithms could significantly increase the channel utilization as well as the network QoS. In this paper, we propose an advanced cognitive network resource allocation algorithm for IEEE 802.11 cognitive Wi-Fi networks. By making use of the status of the transmission channels and the traffic conditions, the proposed algorithm effectively allocates secondary radio resources to improve the overall radio resource utilization and the QoS of the CSMA/CA-based networks. To improve the accuracy and efficiency of the proposed algorithm, a Markov chain model based technique that estimates the achievable network throughput is employed. Furthermore, an autoregressive moving average (ARMA) based model is used to predict the traffic peaks when allocating the channels. OMNeT++ based simulation models are then developed to analyze the performance of the proposed algorithm. It is shown that our predictive resource allocation technique offers higher throughput and QoS compared to existing resource allocation techniques. (C) 2018 Elsevier B.V. All rights reserved.
机译:认知无线电网络(CRN)体系结构可以有效地用于支持在可变流量和信道条件下的不同QoS要求。通常,确定性无线电资源分配算法可以显着提高信道利用率以及网络QoS。在本文中,我们提出了一种用于IEEE 802.11认知Wi-Fi网络的高级认知网络资源分配算法。通过利用传输信道的状态和业务状况,该算法有效地分配了辅助无线资源,以提高整体无线资源利用率和基于CSMA / CA的网络的QoS。为了提高所提出算法的准确性和效率,采用了基于马尔可夫链模型的技术来估计可实现的网络吞吐量。此外,基于自回归移动平均(ARMA)的模型用于在分配通道时预测流量峰值。然后开发基于OMNeT ++的仿真模型来分析所提出算法的性能。结果表明,与现有资源分配技术相比,我们的预测性资源分配技术可提供更高的吞吐量和QoS。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号