首页> 外文期刊>Computer networks >Systematic survey of big data and data mining in internet of things
【24h】

Systematic survey of big data and data mining in internet of things

机译:物联网中的大数据和数据挖掘的系统调查

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the Internet of Things (IoT) has emerged as a new opportunity. Thus, all devices such as smartphones, transportation facilities, public services, and home appliances are used as data creator devices. All the electronic devices around us help our daily life. Devices such as wrist watches, emergency alarms, and garage doors and home appliances such as refrigerators, microwaves, air conditioning, and water heaters are connected to an IoT network and controlled remotely. Methods such as big data and data mining can be used to improve the efficiency of IoT and storage challenges of a large data volume and the transmission, analysis, and processing of the data volume on the IoT. The aim of this study is to investigate the research done on IoT using big data as well as data mining methods to identify subjects that must be emphasized more in current and future research paths. This article tries to achieve the goal by following the conference and journal articles published on IoT-big data and also IoT-data mining areas between 2010 and August 2017. In order to examine these articles, the combination of Systematic Mapping and literature review was used to create an intended review article. In this research, 44 articles were studied. These articles are divided into three categories: Architecture & Platform, framework, and application. In this research, a summary of the methods used in the area of IoT-big data and IoT-data mining is presented in three categories to provide a starting point for researchers in the future. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,物联网(IoT)出现了新的机遇。因此,诸如智能电话,交通设施,公共服务和家用电器之类的所有设备都被用作数据创建者设备。我们周围的所有电子设备都可以帮助我们的日常生活。诸如手表,紧急警报器和车库门之类的设备以及诸如冰箱,微波炉,空调和热水器之类的家用电器已连接到IoT网络并受到远程控制。大数据和数据挖掘等方法可用于提高IoT的效率以及大数据量以及IoT上数据量的传输,分析和处理的存储挑战。这项研究的目的是调查使用大数据以及数据挖掘方法对物联网进行的研究,以识别在当前和将来的研究路径中必须重点强调的主题。本文试图通过跟踪在2010年至2017年8月之间在IoT大数据以及IoT数据挖掘领域发表的会议和期刊文章来实现这一目标。为了检查这些文章,使用了系统映射和文献综述相结合的方法创建预期的评论文章。在这项研究中,研究了44篇文章。这些文章分为三类:体系结构和平台,框架和应用程序。在这项研究中,将物联网大数据和物联网数据挖掘领域中使用的方法的摘要分为三类,为将来的研究人员提供了一个起点。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号