首页> 外文期刊>Computer networks >MOSC: a method to assign the outsourcing of service function chain across multiple clouds
【24h】

MOSC: a method to assign the outsourcing of service function chain across multiple clouds

机译:MOSC:一种在多个云之间分配服务功能链外包的方法

获取原文
获取原文并翻译 | 示例

摘要

As Network Function Virtualization (NFV) becomes reality and cloud computing offers a scalable pay-as-you-go charging model, more network operators would like to outsource their Service Function Chains (SFC) to the public clouds in order to reduce the operational cost. Unfortunately, challenges of Quality of Service guarantee still exist while minimizing the operational cost with outsourcing SFC to public clouds. In this paper, we investigate this problem when there are a large number of candidate cloud providers with the consideration of diverse pricing schemes of network functions, additional latency caused by public network, and the relationship between the Virtual Network Function (VNF) performance and its cost. Compared with our previous conference version, we design D-MOSC, an improved deviation based heuristic algorithm to assign the Outsourcing of SFC across multiple clouds based on Hidden Markov Model (HMM). The extensive simulations show that MOSC saves up to 79.2% cost compared with that of deploying network functions in the local network. MOSC also achieves up to 50.7% cost savings compared with the result of the first-fit based optimization algorithm. Compared with the greedy version, D-MOSC achieves up to 26.7% cost savings with the guarantee of latency requirements. (C) 2018 Elsevier B.V. All rights reserved.
机译:随着网络功能虚拟化(NFV)成为现实,云计算提供了可扩展的即付即用计费模式,更多的网络运营商希望将其服务功能链(SFC)外包给公共云,以降低运营成本。不幸的是,在将SFC外包到公共云的同时,如何在最小化运营成本的同时,仍然存在服务质量保证挑战。在本文中,我们考虑到网络功能的多样化定价方案,公共网络引起的额外延迟以及虚拟网络功能(VNF)性能与其功能之间的关系,在存在大量候选云提供商的情况下调查此问题。成本。与之前的会议版本相比,我们设计了D-MOSC,这是一种改进的基于偏差的启发式算法,用于基于隐马尔可夫模型(HMM)在多个云之间分配SFC的外包。广泛的仿真表明,与在本地网络中部署网络功能相比,MOSC节省了高达79.2%的成本。与基于首次拟合的优化算法相比,MOSC还节省了高达50.7%的成本。与贪婪版本相比,D-MOSC保证了延迟要求,节省了高达26.7%的成本。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Computer networks》 |2018年第14期|166-182|共17页
  • 作者单位

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu 611731, Sichuan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Network Function Virtualization; Cloud computing; Service function chain; Hidden Markov Model;

    机译:网络功能虚拟化;云计算;服务功能链;隐马尔可夫模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号