首页> 外文期刊>Computer networks >Analysing and improving convergence of quantized congestion notification in Data Center Ethernet
【24h】

Analysing and improving convergence of quantized congestion notification in Data Center Ethernet

机译:分析和改善数据中心以太网中拥塞量化通知的收敛性

获取原文
获取原文并翻译 | 示例

摘要

Quantized Congestion Notification (QCN) has been approved as the standard congestion management mechanism for the Data Center Ethernet (DCE). However, lots of work pointed out that QCN suffers from the problem of unfairness among different flows. In this paper, we found that QCN could achieve fairness, merely the convergence time to fairness is quite long. Thus, we build a convergence time model to investigate the reasons of the slow convergence process of QCN. We validate the precision of our model by comparing with experimental data on the NetFPGA platform. The results show that the proposed model accurately well characterizes the convergence time to fairness of QCN. Based on the model, the impact of QCN parameters, network parameters, and QCN variants on the convergence time is analysed in detail. Results indicate that the convergence time of QCN can be decreased if sources have the same rate increase probability or the rate increase step becomes larger at steady state. Enlightened by the analysis, we proposed a mechanism called QCN-T, which replaces the original Byte Counter and Timer at sources with a single modified Timer to reduce the convergence time. Finally, evaluations show great improvements of QCN-T in both convergence and stability. (C) 2017 Elsevier B.V. All rights reserved.
机译:量化拥塞通知(QCN)已被批准为数据中心以太网(DCE)的标准拥塞管理机制。但是,大量的工作指出,QCN存在着不同流之间不公平的问题。在本文中,我们发现QCN可以实现公平性,只是收敛到公平性的时间相当长。因此,我们建立了一个收敛时间模型来研究QCN收敛过程缓慢的原因。通过与NetFPGA平台上的实验数据进行比较,我们验证了模型的精度。结果表明,所提出的模型准确地刻画了QCN收敛到公平的时间。基于该模型,详细分析了QCN参数,网络参数和QCN变体对收敛时间的影响。结果表明,如果源具有相同的速率增加概率或稳态时速率增加步长变大,则可以减少QCN的收敛时间。在分析的启发下,我们提出了一种称为QCN-T的机制,该机制用单个经过修改的Timer替换了源处的原始Byte Counter和Timer,以减少收敛时间。最后,评估显示QCN-T在收敛性和稳定性方面都有了很大的改进。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号