首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Cross-wavelet transform as a new prototype for classification of EEG signals
【24h】

Cross-wavelet transform as a new prototype for classification of EEG signals

机译:交叉小波变换作为EEG信号分类的新原型

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this paper is to develop a computerised method that could be used to classify electroencephalogram (EEG) signals automatically and potentially help doctors, researchers and other medical personnel to detect epileptic signals accurately from a subject's EEG recordings. In this paper, a Cross-Wavelet Transform (XWT) based feature extraction algorithm coupled with a few learning based classification techniques, like the Probabilistic Neural Network (PNN), the Least-Square Support Vector Machine (LS-SVM) and the Learning Vector Quantization (LVQ) is proposed to classify the EEG signals and compare the accuracy of the identification of epileptic activities. Benchmark EEG signals from the Bonn University are utilised to classify the EEG signals into the binary classes viz. Normal and Epileptic subjects. Also, a ternary classification model with categories being signals from healthy volunteers with their eyes open and eyes closed, signals from epileptic subjects during the seizure-free interval measured from within and outside the seizure generating zone of the brain and signals from epileptic subjects experiencing seizures has been put forward. The performance of the above-mentioned three supervised classification algorithms is compared by using the same training and testing datasets during stimulation. The accuracy of classification is obtained to be approximately 99%, 97.5%, 98.5% and 98.2%, 96.4%, 94% for binary and multiclass classification, respectively, using the PNN, LS-SVM and LVQ based classifier.
机译:本文的主要目标是开发一种计算机化方法,可用于自动分类脑电图(EEG)信号,并可能帮助医生,研究人员和其他医务人员从受试者的EEG录音中准确地检测癫痫信号。在本文中,基于跨小波变换(XWT)的特征提取算法,其具有少数基于学习的分类技术,如概率神经网络(PNN),最小二乘支持向量机(LS-SVM)和学习矢量提出量化(LVQ)来分类EEG信号并比较癫痫活动鉴定的准确性。来自Bonn大学的基准EEG信号用于将EEG信号分类为二进制类viz。正常和癫痫受试者。此外,具有类别的三元分类模型是来自健康志愿者的信号,其眼睛睁开,眼睛闭合,从癫痫发作区域内和外部测量的无癫痫术期间来自癫痫发作区域的癫痫发作区域的癫痫发作区和经历癫痫发作的信号已提出。通过在刺激期间使用相同的训练和测试数据集来比较上述三个监督分类算法的性能。使用PNN,LS-SVM和LVQ基于LVQ分类,分别获得分类的准确性约为大约99%,97.5%,98.5%和98.5%和98.2%,96.4%,94.2%,而多种组分分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号