首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Mathematical modelling of ciliary propulsion of an electrically-conducting Johnson-Segalman physiological fluid in a channel with slip
【24h】

Mathematical modelling of ciliary propulsion of an electrically-conducting Johnson-Segalman physiological fluid in a channel with slip

机译:导电性滑液通道中Johnson-Segalman导电生理纤毛的睫状推进的数学模型

获取原文
获取原文并翻译 | 示例
           

摘要

Bionic systems frequently feature electromagnetic pumping and offer significant advantages over conventional designs via intelligent bio-inspired properties. Complex wall features observed in nature also provide efficient mechanisms which can be utilized in biomimetic designs. The characteristics of biological fluids are frequently non-Newtonian in nature. In many natural systems super-hydrophobic slip is witnessed. Motivated by these phenomena, in this paper, we discussed a mathematical model for the cilia-generated propulsion of an electrically-conducting viscoelastic physiological fluid in a ciliated channel under the action of magnetic field. The rheological behavior of the fluid is simulated with the Johnson-Segalman constitutive model which allows internal wall slip. The regular or coordinated movement of the ciliated edges (which line the internal walls of the channel) is represented by a metachronal wave motion in the horizontal direction which generates a two-dimensional velocity profile. This mechanism is imposed by a periodic boundary condition which generates propulsion in the channel flow. Under the classical lubrication approximation, the boundary value problem is non-dimensionalized and solved analytically with a perturbation technique. The influence of the geometric, rheological (slip and Weissenberg number) and magnetic parameters on velocity, pressure gradient and the pressure rise (evaluated via the stream function in symbolic software) are presented graphically and interpreted at length.
机译:仿生系统通常具有电磁泵功能,并通过智能的生物启发特性提供了优于常规设计的显着优势。自然界中观察到的复杂壁特征还提供了可用于仿生设计的有效机制。本质上,生物流体的特性通常是非牛顿的。在许多自然系统中,都出现了超疏水性滑移。受这些现象的影响,在本文中,我们讨论了在磁场作用下纤毛通道中纤毛产生的导电粘弹性生理流体的纤毛产生推进的数学模型。用允许内壁打滑的Johnson-Segalman本构模型模拟流体的流变行为。纤毛边缘的规则或协调运动(在通道的内壁上排成一列)由水平方向上的同步波运动表示,该运动产生二维速度分布。该机制由周期性边界条件强加,该边界条件在通道流中产生推进力。在经典的润滑近似下,边界值问题是无量纲的,并通过摄动技术进行了解析。几何,流变学(滑移和魏森伯格数)和磁学参数对速度,压力梯度和压力上升(通过符号软件中的流函数评估)的影响以图形方式显示,并详细解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号