首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Nonreflecting boundary conditions in elastodynamics for finite element methods based upon off-surface boundary integral equations
【24h】

Nonreflecting boundary conditions in elastodynamics for finite element methods based upon off-surface boundary integral equations

机译:基于表面外边界积分方程的有限元方法的弹性动力学非反射边界条件

获取原文
获取原文并翻译 | 示例

摘要

In this work, an off-surface boundary integral (OSBI) method is presented as a mesh termination scheme for solving large or infinite domain problems of elastodynamics. The boundary integral equation is discretized using finite element shape functions and the Neumann boundary condition term is solved for in terms of the Dirichlet boundary condition term. This expression is then substituted into associated finite element formulation for the interior problem. Comparisons are made using the new OSBI technique, the DtN method of Givoli and Keller and several other local nonreflecting boundary conditions. The proposed boundary condition is shown to be accurate, is well suited for use with finite element methods and is competitive with the DtN method.
机译:在这项工作中,提出了一种表面边界积分(OSBI)方法作为一种网格终止方案,用于解决弹性力学的大型或无限域问题。使用有限元形状函数离散边界积分方程,并根据Dirichlet边界条件项求解Neumann边界条件项。然后将该表达式代入内部问题的相关有限元公式中。使用新的OSBI技术,Givoli和Keller的DtN方法以及其他几种局部非反射边界条件进行了比较。所提出的边界条件被证明是准确的,非常适合与有限元方法一起使用,并且与DtN方法具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号