首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Non-linear strain-displacement equations exactly representing large rigid-body motions. Part Ⅰ Timoshenko-Mindlin shell theory
【24h】

Non-linear strain-displacement equations exactly representing large rigid-body motions. Part Ⅰ Timoshenko-Mindlin shell theory

机译:非线性应变位移方程正好表示大刚体运动。第一部分季莫申科-明德林壳理论

获取原文
获取原文并翻译 | 示例

摘要

The precise representation of arbitrarily large rigid-body motions in the displacement patterns of curved Timoshenko-Mindlin (TM) shell elements is considered. This consideration requires the development of the strain-displacement relationships of the finite deformation TM shell theory with regard to their consistency with the large rigid-body motions. For this purpose a refined TM theory of multilayered anisotropic shells undergoing finite deformations is elaborated. The transverse shear and transverse normal deformation response and bending-extension coupling are included. The fundamental unknowns consist of six displacements and 11 strains of the bottom and top surfaces of the shell, and 11 stress resultants. On the basis of this theory the simple and efficient mixed models are developed by using the incremental total Lagrangian formulation in conjunction with the Newton-Raphson method. The elemental arrays are derived applying the Hu-Washizu mixed variational principle. Numerical results are presented to demonstrate the high accuracy and effectiveness of the developed four-node shell elements and to compare their performance with other non-linear finite elements reported in the literature.
机译:考虑了弯曲的Timoshenko-Mindlin(TM)壳单元的位移模式中任意大型刚体运动的精确表示。考虑到这一点,需要发展有限变形TM壳理论与大刚体运动的一致性方面的应变-位移关系。为了这个目的,阐述了经历有限变形的多层各向异性壳的改进的TM理论。包括横向剪切和横向法向变形响应以及弯曲-延伸耦合。基本的未知数包括壳的底部和顶部表面的六个位移和11个应变,以及11个应力合力。在此理论的基础上,通过使用增量总拉格朗日公式结合牛顿-拉夫森方法,开发了简单有效的混合模型。元素阵列是根据Hu-Washizu混合变分原理导出的。数值结果表明了开发的四节点壳单元的高精度和有效性,并将其性能与文献中报道的其他非线性有限元进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号