首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues
【24h】

Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues

机译:用于3D问题的几何非线性和一致线性化的嵌入式强不连续模型,用于软生物组织的解剖分析

获取原文
获取原文并翻译 | 示例

摘要

Three different finite element formulations with embedded strong discontinuities are derived on the basis of the enhanced assumed strain method. According to the work by Jirasek and Zimmermann [Int. J. Numer. Methods Engrg. 50 (2001) 1269] they are referred to as statically optimal symmetric (SOS), kinematically optimal symmetric (KOS) and statically and kinematically optimal non-symmetric (SKON) formulations. The effect of the discontinuities are characterized by additional degrees of freedom on the element level. Modifications to the standard KOS and SKON formulations are proposed in order to achieve consistency with the employed type of a three-field Hu-Washizu principle under mode-I condition. Under this condition the formulation satisfies the internal compatibility at the discontinuity, i.e. the relation between the stress in the bulk material and the traction across the discontinuity surface, which is not the case for the classical KOS formulation. We propose a suitable explicit expression for a transversely isotropic traction law in form of a displacement-energy function and assume that softening phenomena in the cohesive zone are modeled by a damage law, which depends on the maximum gap displacement of the deformation path. A linearization of all quantities, which are related to the non-linear problem, leads to new closed form expressions. In particular, we focus attention on the linearization of the cohesive traction vector. The associated element residua and stiffness matrices are provided. Standard static condensation of the internal degree of freedom leads to a generalized displacement model. A comparative study of the modified formulations, carried out by means of two numerical examples, show the performance of the individual approach. We employ constant-strain tetrahedral elements with a single discontinuity embedded. Among the known stress locking phenomena associated with the SOS formulation, we recognized that the (non-symmetric) SKON formulation was not able to provide meaningful results for the dissection process of an arterial layer in three-dimensions on distorted meshes. For both numerical examples the (symmetric) KOS formulation seems to be most suitable for representing the embedded discontinuities.
机译:在增强的假定应变方法的基础上,得出了三种不同的具有强不连续性的有限元公式。根据Jirasek和Zimmermann的著作[Int。 J.纽默方法工程。 50(2001)1269]将它们称为静态最优对称(SOS),运动最优对称(KOS)以及静态和运动最优非对称(SKON)公式。不连续的影响的特征在于元素级别的附加自由度。提出了对标准KOS和SKON公式的修改,以实现与在模式I条件下采用的三场Hu-Washizu原理的一致性。在这种条件下,该配方满足不连续处的内部相容性,即散装材料中的应力与穿过不连续表面的牵引力之间的关系,而传统的KOS配方则不是这种情况。我们以位移-能量函数的形式为横观各向同性的牵引定律提出了一个合适的显式表达式,并假定粘结区中的软化现象是根据损伤定律建模的,该定律取决于变形路径的​​最大间隙位移。与非线性问题有关的所有数量的线性化导致新的闭合形式表达式。特别是,我们将注意力集中在粘性牵引力向量的线性化上。提供了相关的元素残基和刚度矩阵。内部自由度的标准静态凝结会生成广义位移模型。通过两个数值示例对改性配方进行的比较研究显示了单独方法的性能。我们采用嵌入单个不连续性的恒定应变四面体单元。在与SOS配方相关的已知应力锁定现象中,我们认识到(非对称)SKON配方无法为扭曲的网格上的三维三维解剖过程提供有意义的结果。对于两个数值示例,(对称)KOS公式似乎最适合表示嵌入的不连续点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号