...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Verification and validation in computational engineering and science: basic concepts
【24h】

Verification and validation in computational engineering and science: basic concepts

机译:计算工程与科学中的验证与确认:基本概念

获取原文
获取原文并翻译 | 示例
           

摘要

Some essential points presented thus far are summarized as follows: 1. Validation involves comparison of observed physical events with those predicted by mathematical models of the component events (validation problems). 2. The prediction can be only verified to certain tolerances. 3. By physical event, we mean a specific physical entity, a quantity (or list of quantities) of interest that is (are) generally specified a priori, before the computer simulation. 4. The accuracy of a model's prediction can be judged only relative to tolerance supplied by the analyst and then only for a limited number of observations, never for all possible situations covered by the model; these tolerances are arbitrary, in the sense that different analysts may choose different tolerances for different quantities of interest for different purposes. 5. The tolerances for validation are statistical in nature, generally given in terms of a significance level. 6. Verification involves two basic components, code verification, which encompasses the software engineering processes of determining if the code faithfully implements the computational model, and solution verification, which is concerned with numerical accuracy with which the mathematical model is approximated by the computational model. 7. Solution verification involves assessing the accuracy of computed results for both the global and the validation component models compared with those capable of being predicted by the mathematical models selected to depict the physical event of interest. Solution verification involves a posteriori estimation of a numerical or discretization error. 8. Experimental results used in the validation process can themselves be in error. The reproducibility of experimental results for validation component models is essential. The impossibility of total and absolute verification and validation of computer models, and the dependence of V&V on subjective processes based on human experience, in no way make the subject inferior or different from any other scientific endeavor. Ernest Nagel noted that "the daily affairs of men are carried out within a framework of steady habits and confident beliefs, on the one hand, and of unpredictable strokes of fortune and precarious judgments on the other... In spite of such uncertainties, we manage to order our Jives with some measure of satisfaction; and we learn, though not always easily, that, even when grounds for our belief are not conclusive, some beliefs can be better grounded that others." And, finally, ".. .the methods of the natural sciences are the most reliable instruments men have thus far devised for ascertaining matters of fact, but that withal the conclusions reached by them are only probable because they rest on evidence which is formally incomplete."
机译:到目前为止提出的一些要点总结如下:1.验证包括将观察到的物理事件与通过组件事件的数学模型预测的物理事件进行比较(验证问题)。 2.仅可以将预测验证为特定的公差。 3.物理事件,我们指的是特定的物理实体,通常是在计算机模拟之前先验指定的感兴趣的数量(或数量列表)。 4.只能相对于分析人员提供的容忍度来判断模型预测的准确性,然后只能针对有限数量的观察结果进行判断,绝不能针对模型所涵盖的所有可能情况进行判断;这些公差是任意的,从某种意义上说,不同的分析师可能针对不同的目的针对不同的目的选择不同的公差。 5.验证的公差本质上是统计的,通常以显着性水平给出。 6.验证涉及两个基本组成部分:代码验证(包括确定代码是否忠实实现计算模型的软件工程过程)和解决方案验证(解决方案验证),这涉及数学模型由计算模型近似的数值精度。 7.解决方案验证涉及评估全局模型和验证组件模型的计算结果的准确性,并与能够通过选择用来描述感兴趣的物理事件的数学模型进行预测的结果进行比较。解决方案验证涉及数值误差或离散误差的后验估计。 8.验证过程中使用的实验结果本身可能是错误的。验证组件模型的实验结果的可重复性至关重要。不可能对计算机模型进行完全和绝对的验证和确认,以及V&V对基于人类经验的主观过程的依赖,决不会使该学科逊色于任何其他科学尝试或与之不同。欧内斯特·内格尔(Ernest Nagel)指出:“一方面,人们的日常事务是在稳定的习惯和自信的信念的框架内进行的;另一方面,人们的命运却是不可预知的。设法使我们的吉夫斯获得某种程度的满足;并且尽管并非总是那么容易,但我们了解到,即使我们的信仰基础不是决定性的,某些信仰也可以比其他信仰更好。最后,“……自然科学的方法是迄今为止人们用来确定事实的最可靠的工具,但是他们得出的结论只有由于其依据的是形式上不完整的证据,才是可能的。 。”

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号