首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Anisotropic finite elastoplastic analysis of shells: simulation of earing in deep-drawing of single- and polycrystalline sheets by Taylor-type micro-to-macro transitions
【24h】

Anisotropic finite elastoplastic analysis of shells: simulation of earing in deep-drawing of single- and polycrystalline sheets by Taylor-type micro-to-macro transitions

机译:壳的各向异性有限弹塑性分析:通过泰勒型微观到宏观转变模拟单晶和多晶薄板深冲模中的垂耳

获取原文
获取原文并翻译 | 示例

摘要

The paper presents new aspects of anisotropic elastoplastic analyses of shells at finite strains. On the side of the computational shell analysis we design a surface-orientated brick-type mixed finite shell element in a setting relative to the parameter space of the shell equipped with shell-typical assumed strain modifications and an additive definition of an enhanced current metric in the Lagrangian representation. For this element we outline an interface to strain-driven constitutive stress update algorithms of multiplicative plasticity for single crystals and polycrystals at finite strains. On the side of computational plasticity we outline details of a constitutive model for finite single crystal plasticity. Here, we consider a distinct incremental variational formulation of the local constitutive elasto-visco-plastic response of single crystals in a multisurface format, where a quasi-hyperelastic stress potential is obtained from a local minimization problem with respect to the internal variables. It is shown that this local minimization problem determines the internal state of the material for finite increments of time. The proposed nonlinear shell formulation is applied to the simulation of earing in deep-drawing of anisotropic sheets. We present finite element simulations of cup-drawings of f.c.c. single crystal sheets and previously rolled polycrystalline f.c.c. sheets. The anisotropic polycrystal is modeled by a Taylor-type texture analysis based on an assumed microstructure of single crystal grains. A comparison with experiments underlines the performance of the simulation.
机译:本文介绍了壳在有限应变下的各向异性弹塑性分析的新方面。在计算壳体分析方面,我们在相对于壳体参数空间的设置中设计了一个面向表面的砖型混合有限壳体单元,该单元配备了壳体典型假定的应变修正和增强电流度量的附加定义。拉格朗日表示法。对于此元素,我们概述了在有限应变下单晶和多晶应变驱动的本构乘法更新的接口,该乘法具有可塑性。在计算可塑性方面,我们概述了有限单晶可塑性的本构模型的细节。在这里,我们考虑了单晶在多表面形式下的局部本构弹-粘塑性响应的不同增量变式,其中从内部变量的局部最小化问题中获得了准超弹性应力势。结果表明,这种局部最小化问题决定了有限时间增量的材料内部状态。所提出的非线性壳公式被应用于各向异性板深拉伸中的耳模模拟。我们提供了f.c.c的杯子绘图的有限元模拟。单晶片和预先轧制的多晶f.c.c.床单。各向异性多晶是基于假定的单晶粒微结构通过泰勒型纹理分析建模的。与实验的比较强调了模拟的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号