首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Hydraulic conductivity estimation in partially saturated soils using the adjoint method
【24h】

Hydraulic conductivity estimation in partially saturated soils using the adjoint method

机译:伴随法估算部分饱和土的导水率。

获取原文
获取原文并翻译 | 示例

摘要

An iterative algorithm based on the adjoint method for the estimation of the saturated hydraulic conductivity k in a partially saturated soil Q is proposed. Groundwater flow in Q is assumed to be described by Richards equation. The optimization problem minimizes the L~2-error between the pressure head values p(k, x, t) calculated as the solution of a direct problem and the measured values of the pressure head at discrete points inside the domain Q. The exact gradient of the cost functional is obtained by solving an appropriate adjoint problem, which is derived from the equations of the Gateaux derivatives of the pressure head with respect to the parameter k. A finite element procedure is used to obtain approximate solutions of the direct and adjoint problems and the Gateaux derivatives. A discrete form of the expression of the gradient of the cost functional at the continuous level is used inside a nonlinear conjugate gradient iteration to solve the optimization problem. A numerical example showing the implementation of the algorithm to estimate the saturated hydraulic conductivity k(x) during an hypothetical infiltration experiment in a heterogeneous soil is also presented.
机译:提出了一种基于伴随法的迭代算法,用于部分饱和土壤Q中饱和导水率k的估算。假设Q中的地下水流量由Richards方程描述。最优化问题使作为直接问题的解而计算出的压头值p(k,x,t)与域Q内离散点处的压头的测量值之间的L〜2误差最小化。精确梯度通过求解适当的伴随问题,可以得出成本函数的总和,该伴随问题是从压头的Gateaux导数相对于参数k的方程式得出的。使用有限元程序来获得直接问题和伴随问题以及Gateaux导数的近似解。在非线性共轭梯度迭代中使用连续形式的成本函数的梯度表示的离散形式来解决优化问题。还给出了一个数值示例,显示了在假设的非均质土壤渗透实验过程中估算饱和水导率k(x)的算法的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号