首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An implicit algorithm within the arbitrary Lagrangian-Eulerian formulation for solving incompressible fluid flow with large boundary motions
【24h】

An implicit algorithm within the arbitrary Lagrangian-Eulerian formulation for solving incompressible fluid flow with large boundary motions

机译:拉格朗日-欧拉公式中的一种隐式算法,用于解决边界运动较大的不可压缩流体

获取原文
获取原文并翻译 | 示例

摘要

The objective of the paper is to present an implicit algorithm for incompressible fluid flow solution using the arbitrary Lagrangian-Eulerian (ALE) formulation and to investigate solution accuracy and stability of the algorithm. The governing equations of the implicit procedure are derived using isoparametric interpolations for the fluid velocities and pressure. The details suitable for general use are presented in our derivations of the fundamental equations and of the basic finite element balance equations. The penalty method is utilized to eliminate the pressure on the element level. Accuracy and stability of the solutions are demonstrated in three examples for which the analytical solutions are known. In the first example, the Burger's equation analogue to 1-D fluid flows is solved without and with FE mesh motion, to show that the mesh motion practically does not affect the solutions. In the second example, the solitary wave motion with large displacements of the free boundary is solved as a benchmark problem. In the third example, the fluid flow in an infinite contractible and expandable pipe with prescribed large radial wall motion is solved. This example is specifically attractive for biological flows as in blood vessels and lung airways. All solutions presented show that the proposed algorithm is sufficiently accurate and stable. Since the algorithm is implicit, high accuracy of results can be achieved with a relatively large time step.
机译:本文的目的是提出一种使用任意拉格朗日-欧拉(ALE)公式的不可压缩流体流动求解的隐式算法,并研究该算法的求解精度和稳定性。隐式过程的控制方程是使用等参插值导出的,用于计算流体的速度和压力。在我们对基本方程式和基本有限元平衡方程式的推导中,提供了适合一般使用的细节。惩罚方法用于消除元素水平上的压力。在已知分析溶液的三个示例中证明了溶液的准确性和稳定性。在第一个示例中,在不使用有限元网格运动和不使用有限元网格运动的情况下,求解了与一维流体流动类似的Burger's方程,以表明网格运动实际上不影响解。在第二个示例中,解决了自由边界位移大的孤立波运动作为基准问题。在第三个示例中,解决了在具有规定的较大径向壁运动的无穷伸缩性管道中的流体流动。这个例子对于在血管和肺气道中的生物流动特别有吸引力。提出的所有解决方案均表明,所提出的算法足够准确且稳定。由于该算法是隐式的,因此可以在相对较大的时间步长下实现高精度的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号