首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Least-squares finite element formulations for viscous incompressible and compressible fluid flows
【24h】

Least-squares finite element formulations for viscous incompressible and compressible fluid flows

机译:粘性不可压缩和可压缩流体流动的最小二乘有限元公式

获取原文
获取原文并翻译 | 示例

摘要

We present least-squares based finite element formulations for the numerical solution of viscous fluid flows governed by the Navier-Stokes equations, as an alternate approach to the well-known weak form Galerkin finite element formulations. The use of least-squares principles leads to a variational unconstrained minimization problem where compatibility conditions between approximation spaces never arise and the resulting linear algebraic problem will have a symmetric positive definite coefficient matrix. We address the issue of norm equivalence of the least-squares functional and its implications on the resulting finite element model. In particular, we develop an understanding of the compromise that must exist between the optimality and practicality of the finite element model, the latter measured in terms of C~k regularity across inter-element boundaries. We show, through numerical examples, that for the traditional C~0 basis such a compromise is possible when high p-levels are used to span the finite element spaces. When a low p-level solution is desired, guidelines are presented to obtain a reliable least-squares collocation solution. Numerical examples are presented to demonstrate the high and low p-level approaches. These include incompressible flow past two circular cylinders in a side-by-side arrangement for gap sizes S/D = 2.0 and 0.85, incompressible flow past a square cylinder, and subsonic, transonic, and supersonic compressible flow past a circular cylinder. In addition, we present a discontinuous least-squares formulation, where C~k regularity across inter-element boundaries is enforced in a weak sense through the least-squares functional—allowing for h- and p-type non-conformities in the computational domain.
机译:我们介绍了基于最小二乘的有限元公式,用于求解由Navier-Stokes方程控制的粘性流体流动的数值解,作为对众所周知的弱形式Galerkin有限元公式的一种替代方法。最小二乘原理的使用会导致一个变分式无约束最小化问题,其中逼近空间之间的相容性条件永远不会出现,并且所得的线性代数问题将具有对称的正定系数矩阵。我们讨论最小二乘函数的范数等价问题及其对所得有限元模型的影响。特别是,我们对有限元模型的最优性和实用性之间必须存在的折衷有了一个理解,后者是根据跨元素间边界的Ck规律性来衡量的。我们通过数值示例表明,对于传统的C〜0基础,当使用高p级跨越有限元素空间时,这种折衷是可能的。当需要低p级解决方案时,会提供一些指导,以获得可靠的最小二乘搭配解决方案。数值例子表明了高和低p级方法。这些包括以间隙尺寸S / D = 2.0和0.85并排布置的方式通过两个圆柱体的不可压缩流,通过方形圆柱体的不可压缩流以及通过圆柱体的亚音速,跨音速和超音速可压缩流。此外,我们提出了一种不连续的最小二乘公式,其中通过最小二乘函数在较弱的意义上强制了跨元素间边界的C〜k正则性-允许在计算域中出现h型和p型不一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号