首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Stay Cartesian, or go natural? A comment on the article 'Supernatural QUAD4: A template formulation' by C. A. Felippa [Comput. Methods Appl. Mech. Engrg., 195 (2006) 5316-5342]
【24h】

Stay Cartesian, or go natural? A comment on the article 'Supernatural QUAD4: A template formulation' by C. A. Felippa [Comput. Methods Appl. Mech. Engrg., 195 (2006) 5316-5342]

机译:保持笛卡尔式还是自然的? C. A. Felippa对“超自然QUAD4:一种模板制剂”的评论。方法应用。机甲Engg。195(2006)5316-5342]

获取原文
获取原文并翻译 | 示例

摘要

In a very interesting review and critical study of a five decade long search for an element free of locking and distortion sensitivity, Felippa poses a very intriguing question: "Stay Cartesian, or go natural?" The strategy recommended is: "Stay Cartesian, for the basic stiffness, but go natural for the higher order one". In a series of papers published recently, Rajendran and co-workers have introduced what they call the unsym-metric finite element formulation to improve predictions from severely distorted finite elements. They introduce a special formulation using two separate sets of shape functions, viz., the so-called compatibility (or continuity) enforcing shape functions and the so-called completeness enforcing shape functions. The former are chosen to satisfy exactly the minimum inter- as well as intra-element displacement continuity requirements, while the latter are chosen to satisfy all the (linear and higher order) completeness requirements. Numerical results from test problems reveal that if the natural (parametric) functions are used as test functions describing the virtual strains but the Cartesian (metric) functions serve as trial functions describing the real stresses (in the context of the virtual work formulation of Strang and Fix [5]), the formulation works surprisingly well because the former satisfy the continuity conditions while the latter ensure that the stress representation during finite element computation can retrieve in a best-fit manner, the actual variation of stress in the metric (Cartesian) space.
机译:在一项非常有趣的评论和批判性研究中,费利帕(Felippa)进行了长达五年的寻找没有锁定和变形敏感性的元素的研究,提出了一个非常有趣的问题:“保持笛卡尔式还是自然化?”推荐的策略是:“对于基本刚度,保持直角坐标,对于高阶则保持自然”。在最近发表的一系列论文中,Rajendran及其同事介绍了他们所谓的非对称有限元公式,以改善对严重变形的有限元的预测。他们介绍了使用两组单独的形状函数(即所谓的兼容性(或连续性)强制形状函数和所谓的完整性强制形状函数)的特殊公式。选择前者是为了完全满足最小的元素间以及元素内位移连续性要求,而选择后者是为了满足所有(线性和更高阶)完整性要求。测试问题的数值结果表明,如果将自然(参数)函数用作描述虚拟应变的测试函数,但将笛卡尔(度量)函数用作描述实际应力的试验函数(在Strang和A.固定[5]),该公式的效果出乎意料地好,因为前者满足连续性条件,而后者则确保有限元计算过程中的应力表示可以最佳拟合的方式获得公制应力的实际变化(笛卡尔)。空间。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号