首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Phenomenological invariant-based finite-element model for geometrically nonlinear analysis of thin shells
【24h】

Phenomenological invariant-based finite-element model for geometrically nonlinear analysis of thin shells

机译:基于现象学不变性的薄壳几何非线性分析有限元模型

获取原文
获取原文并翻译 | 示例

摘要

A Kirchhoff-Love type curved triangular finite element is proposed for geometrically nonlinear analysis of elastic isotropic shells undergoing small strains but large displacements. The finite-element formulation is based on the expression of the strain energy in terms of invariants of the strain and curvature-change tensors of the shell middle surface. The element sides are chosen as three independent directions for determining the strains and curvature changes. The emphasis is put on improvement of the bending behavior of the element so that the element is able to undergo finite curvature changes. Recursive relations are obtained for exactly calculating the coefficients of the first- and second-order variations of the strain energy of the finite element which are necessary to formulate the equilibrium and stability conditions of the discrete model of a shell. A shell finite element with 15 degrees of freedom is developed and tested. Numerical examples are presented to demonstrate the accuracy and mesh convergence of the finite-element solutions.
机译:提出了一种Kirchhoff-Love型弯曲三角形有限元,用于对应变较小但位移较大的弹性各向同性壳体进行几何非线性分析。有限元公式是基于应变能的表达,该应变能表示壳中间表面的应变和曲率变化张量的不变量。选择元件侧面作为确定应变和曲率变化的三个独立方向。重点在于改善元件的弯曲性能,以使元件能够经历有限的曲率变化。获得递归关系,以精确计算有限元应变能的一阶和二阶变化系数,这对于公式化壳离散模型的平衡和稳定性条件是必需的。开发并测试了具有15个自由度的壳有限元。数值算例表明了有限元解的准确性和网格收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号