首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Hypersingular shape sensitivity boundary integral equation for crack identification under harmonic elastodynamic excitation
【24h】

Hypersingular shape sensitivity boundary integral equation for crack identification under harmonic elastodynamic excitation

机译:谐波弹性动力激励下裂纹识别的超奇异形状敏感边界积分方程

获取原文
获取原文并翻译 | 示例

摘要

Model-based nondestructive testing (NDT) requires fast and accurate solutions of the response of the mechanical model including the defect as well as the sensitivity of this response to the variation of the parameters describing the defect. For modelling crack-type defects under dynamic conditions, like vibration analysis or ultrasonics, the boundary element method (BEM) is especially well suited, in particular due to the hypersingular formulation. The present work presents the stress sensitivity boundary integral equation, δqBIE, and its use for the solution of the inverse problem when coupled to gradient-based minimization algorithms. The capability of solving numerically a NDT problem such as the location and characterization of cracks by measuring the dynamic response at an accessible boundary of the specimen is evaluated. For that, the accuracy and convergence of the sensitivity from the δqBIE is verified. Then, comprehensive convergence tests are made for the initial guess, the amount of supplied measurements, and simulated errors on measurements, geometry, elastic constants and frequency.
机译:基于模型的无损检测(NDT)需要对包括缺陷在内的机械模型的响应以及该响应对描述缺陷的参数变化的敏感性的快速而准确的解决方案。为了在动态条件下(例如振动分析或超声)对裂纹类型的缺陷进行建模,特别是由于采用超奇异公式,边界元方法(BEM)特别适用。本工作提出了应力敏感性边界积分方程δqBIE,并结合了基于梯度的最小化算法,将其用于求解反问题。评估了通过测量试样可及边界处的动态响应来数值求解NDT问题(如裂纹的位置和特征)的能力。为此,验证了来自δqBIE的灵敏度的准确性和收敛性。然后,针对初始猜测,提供的测量量以及有关测量,几何形状,弹性常数和频率的模拟误差进行全面的收敛测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号