首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect
【24h】

Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect

机译:具有较大附加质量效应的流体结构系统的模块化和非模块化预处理器

获取原文
获取原文并翻译 | 示例
           

摘要

In this article we address the numerical simulation of fluid-structure interaction (FSI) problems featuring large added-mass effect. We analyze different preconditioners for the coupled system matrix obtained after space-time discretization and linearization of the FSI problem. The classical Dirichlet-Neumann preconditioner has the advantage of "modularity" because it allows to reuse existing fluid and structure codes with minimum effort (simple interface communication). Unfortunately, its performance is very poor in case of large added-mass effects. Alternatively, we consider two non-modular approaches. The first one consists in preconditioning the coupled system with a suitable diagonal scaling combined with an ILUT preconditioner. The system is then solved by a Krylov method. The drawback of this procedure is that the combination of fluid and structure codes to solve the coupled system is not straightforward. The second non-modular approach we consider is a splitting technique based on an inexact block-LU factorization of the linear FSI system. The resulting algorithm computes the fluid velocity separately from the coupled pressure-structure system at each iteration, reducing the computational cost. Independently of the preconditioner, the efficiency of semi-implicit algorithms (i.e., those that treat geometric and fluid nonlinearities in an explicit way) is highlighted and their performance compared to the one of implicit algorithms. All the methods are tested on three-dimensional blood-vessel systems. The algorithm combining the non-modular ILUT preconditioner with Krylov methods proved to be the fastest.
机译:在本文中,我们讨论了具有较大附加质量效应的流固耦合(FSI)问题的数值模拟。我们分析了FSI问题的时空离散化和线性化后获得的耦合系统矩阵的不同预处理器。经典的Dirichlet-Neumann预处理器具有“模块化”的优势,因为它允许以最小的工作量(简单的接口通信)重用现有的流体和结构代码。不幸的是,在大质量效应的情况下,其性能非常差。另外,我们考虑两种非模块化方法。第一个是通过结合适当的对角线比例缩放和ILUT预处理器对耦合系统进行预处理。然后通过Krylov方法求解该系统。该过程的缺点在于,流体和结构代码的组合无法解决耦合系统的问题。我们考虑的第二种非模块化方法是基于线性FSI系统的不精确块LU分解的拆分技术。所得算法在每次迭代时都与耦合压力结构系统分开计算流体速度,从而降低了计算成本。与预条件器无关,突出显示了半隐式算法(即以显式方式处理几何和流体非线性的算法)的效率,并且与隐式算法相比,它们的性能更高。所有方法都在三维血管系统上进行了测试。结合非模块化ILUT预处理器和Krylov方法的算法被证明是最快的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号