首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Modeling of failure in composites by X-FEM and level sets within a multiscale framework
【24h】

Modeling of failure in composites by X-FEM and level sets within a multiscale framework

机译:在多尺度框架内通过X-FEM和水平集对复合材料中的失效进行建模

获取原文
获取原文并翻译 | 示例

摘要

Composites or multi-phase materials are characterized by a distinct heterogeneous microstructure. The failure modes of these materials are governed by several micromechanical effects like debonding phenomena and matrix cracks. The overall mechanical behavior of composites in the linear as well as the nonlinear regime is not only governed by the material properties of the components and their bonds but also by the material layout. In the present contribution the material structure is resolved and modeled on a small scale allowing to deal with these effects. For the numerical simulation we apply a combination of the extended finite-element method (X-FEM) [N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg. 46 (1999) 131-150] and the level set method (LSM) [S. Osher, J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988) 12-49]. In the X-FEM the finite-element approximation is enriched by appropriate functions through the concept of partition of unity. The geometry of material interfaces and cracks is described by the LSM. The combination of both, X-FEM and LSM, turns out to be very natural since the enrichment can be described and even constructed in terms of level set functions. In order to project the material behavior modeled on a small scale onto the large or structural scale, we employ the variational multiscale method (VMM) [T. Hughes, G. Feijoo, L. Mazzei, J.-B. Quiney, The variational multiscale method - a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg. 166 (1998) 3-24]. This concept is based on an additive split of the displacement field into large and small scale parts. For an efficient solution of the discrete problem we postulate that the small scale displacements are locally supported; in order to achieve this objective one has to assume appropriate constraint conditions. It can be shown that the applied numerical model allows a considerable flexibility concerning the variation of the material design and consequently of the mechanical behavior of a composite.
机译:复合材料或多相材料的特征在于明显的异质微观结构。这些材料的失效模式受几种微机械效应的控制,例如脱粘现象和基体裂纹。复合材料在线性和非线性状态下的整体机械性能不仅受部件及其键合材料的材料性能控制,还受材料布局的控制。在目前的贡献中,物质结构得以解析并在小规模上建模,从而可以应对这些影响。对于数值模拟,我们将扩展有限元方法(X-FEM)[N. Moes,J。Dolbow,T。Belytschko,一种无需重新网格化裂纹扩展的有限元方法,诠释。 J.纽默方法工程。 46(1999)131-150]和级别设置方法(LSM)[S. Osher,J。Sethian,《与曲率有关的速度传播的前沿:基于Hamilton-Jacobi公式的算法》,J。Comput。物理79(1988)12-49]。在X-FEM中,通过单位划分的概念,适当的函数丰富了有限元近似。材料界面和裂纹的几何形状由LSM描述。事实证明,X-FEM和LSM的结合非常自然,因为可以根据水平集功能描述甚至构建浓缩。为了将以小规模建模的材料行为投影到大规模或结构规模,我们采用了变分多尺度方法(VMM)[T。休斯,G。费乔,L。Mazzei,J.-B。 Quiney,变分多尺度方法-计算力学范例,Comput。方法应用。机甲gr 166(1998)3-24]。该概念基于位移场的加法分解,分为大小部分。为了有效解决离散问题,我们假设局部支持小比例位移。为了实现这一目标,必须采取适当的约束条件。可以看出,所应用的数值模型在材料设计变化以及复合材料的机械性能方面都具有相当大的灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号