首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Equilibrated Residual Error Estimates Are P-robust
【24h】

Equilibrated Residual Error Estimates Are P-robust

机译:平衡的残留误差估计值是P稳健的

获取原文
获取原文并翻译 | 示例

摘要

Equilibrated residual error estimators applied to high order finite elements are analyzed. The estimators provide always a true upper bound for the energy error. We prove that also the efficiency estimate is robust with respect to the polynomial degrees. A complete theory is provided for tensor product elements. In the case of simplicial elements, the theorem was first based on a conjecture, but the conjecture was quite recently proved by Costabel and Mclntosh [M. Costabel, A. Mclntosh, On Bogovskir and regularized Poincare integral operators for de Rham complexes on Lipschitz domains. IRMAR-Preprint 08-40, Rennes, August 2008]. Numerical evidence for the p-robustness is provided.
机译:分析了应用于高阶有限元的平衡残差估计量。估算器始终为能量误差提供真实的上限。我们证明效率估计对于多项式也是稳健的。提供了张量积元素的完整理论。在单纯形元素的情况下,该定理首先基于一个猜想,但是这个猜想是由Costabel和Mclntosh [M. Costabel,A。Mclntosh,On Bogovskir和Lipschitz域上de Rham络合物的正则Poincare积分算子。 IRMAR-Preprint 08-40,雷恩,2008年8月]。提供了p稳健性的数字证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号