首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A generalized Hill's lemma and micromechanically based macroscopic constitutive model for heterogeneous granular materials
【24h】

A generalized Hill's lemma and micromechanically based macroscopic constitutive model for heterogeneous granular materials

机译:广义Hill引理和基于微观力学的非均质颗粒材料宏观本构模型

获取原文
获取原文并翻译 | 示例

摘要

Based on the Hill's lemma for classical Cauchy continuum, a generalized Hill's lemma for micro-macro homogenization modeling of gradient-enhanced Cosserat continuum is presented in the frame of the average-field theory. In this context not only the strain and stress tensors defined in classical Cosserat continuum but also their gradients are attributed to assigned micro-structural representative volume element (RVE), that leads to a higher-order macroscopic Cosserat continuum modeling and enables to incorporate the micro-structural size effects. The enhanced Hill-Mandel condition for gradient-enhanced Cosserat continuum is extracted as a corollary of the presented generalized Hill's lemma. The derived admissible boundary conditions for the modeling are deduced to direct the proper presentation of boundary conditions to be prescribed on the RVE in order to ensure the satisfaction of the Hill-Mandel energy condition. With the link between the discrete particle assembly and its effective Cosserat continuum in an individual RVE, the boundary conditions prescribed on the RVE modeled as Cosserat continuum are transformed into those prescribed to the peripheral particles of the RVE modeled as the discrete particle assembly. The micromechanically based macroscopic constitutive model and corresponding rate forms of the macroscopic stress-strain relations taking into account the local microstructure and its evolution are formulated with neither need of specifying the macroscopic constitutive relation nor need of providing macroscopic material parameters.
机译:基于经典柯西连续体的希尔引理,在平均场理论的框架内,提出了梯度增强的Cosserat连续体的微观宏均匀化建模的广义希尔引理。在这种情况下,不仅经典的Cosserat连续体中定义的应变和应力张量,而且它们的梯度也归因于分配的微观结构代表体积元素(RVE),从而导致了更高阶的宏观Cosserat连续体建模,并使得能够合并微观结构。结构尺寸的影响。提取了梯度增强的Cosserat连续体的增强Hill-Mandel条件,作为提出的广义Hill引理的推论。推导得出的用于模型的容许边界条件,以指导在RVE上规定的边界条件的正确表示,以确保满足Hill-Mandel能量条件。通过单个RVE中离散粒子集合与其有效Cosserat连续体之间的联系,将建模为Cosserat连续体的RVE上规定的边界条件转换为建模为离散粒子集合的RVE外围粒子所规定的边界条件。基于微观力学的宏观本构模型和考虑了局部微观结构及其演化的宏观应力-应变关系的相应速率形式,无需指定宏观本构关系,也无需提供宏观材料参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号