...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Rosenbrock-type methods applied to finite element computations within finite strain viscoelasticity
【24h】

Rosenbrock-type methods applied to finite element computations within finite strain viscoelasticity

机译:Rosenbrock型方法在有限应变粘弹性范围内的有限元计算中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this article time-adaptive high-order Rosenbrock-type methods are applied to the system of differential-algebraic equations which results from the space-discretization using finite elements based on a constitutive model of finite strain viscoelasticity. It is shown that in this smooth problem more efficient finite element computations result in comparison to classical finite element approaches since the time integration on the basis of Rosenbrock-type methods does not lead to a system of non-linear equations. In other words, all aspects of implicit finite elements as local iterations on Gauss-point level and global equilibrium iterations do not occur. The first introduction to this approach proposed by Hartmann and Wensch [22] is extended here to the case of finite strain applications, where the geometrical non-linear deformation has an essential contribution to the non-linearities. Additionally, a clear decomposition into local (element or Gauss-point) work and global computational work using the Schur-complement is introduced to exploit the classical finite element character. Moreover, the extension to the reaction force computation, which is different to the classical approach, and the influence to mixed element formulations, here, the three-field formulation for displacements, pressure and dilatation, are discussed. The performance of various Rosenbrock-type methods is investigated and shows that for low accuracy requirements as in order one methods, the proposal yields a drastic reduction of the computational time.
机译:本文将时间自适应的高阶Rosenbrock型方法应用于微分代数方程组,该系统是基于有限应变粘弹性本构模型的有限元空间离散化而产生的。结果表明,在这种光滑问题中,与传统的有限元方法相比,有限元计算效率更高,因为基于Rosenbrock型方法的时间积分不会导致非线性方程组。换句话说,不会发生隐式有限元的所有方面,例如高斯点级别的局部迭代和全局平衡迭代。 Hartmann和Wensch [22]提出的这种方法的第一个介绍在此扩展到有限应变应用的情况,其中几何非线性变形对非线性有重要贡献。此外,引入了使用Schur补码的局部(元素或高斯点)功和全局计算功的清晰分解,以利用经典的有限元特征。此外,讨论了不同于经典方法的反作用力计算的扩展,以及对混合单元公式的影响,这里是位移,压力和膨胀的三场公式。对各种Rosenbrock型方法的性能进行了研究,结果表明,对于低精度要求(如一种方法),该建议大大减少了计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号