首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods
【24h】

Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods

机译:假设应力混合有限元方法的一致收敛性和后验误差估计

获取原文
获取原文并翻译 | 示例

摘要

Assumed stress hybrid methods are known to improve the performance of standard displacement-based finite elements and are widely used in computational mechanics. The methods are based on the Hellin-ger-Reissner variational principle for the displacement and stress variables. This work analyzes two existing 4-node hybrid stress quadrilateral elements due to Pian and Sumihara [T.H.H. Pian, K. Sumihara, Rational approach for assumed stress finite elements, Int. J. Numer. Methods Engrg. 20 (9) (1984) 1685-1695] and due to Xie and Zhou [X.P. Xie, T.X. Zhou, Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, Int. J. Numer. Methods Engrg. 59 (2004) 293-313], which behave robustly in numerical benchmark tests. For the finite elements, the isoparametric bilinear interpolation is used for the displacement approximation, while different piecewise-independent 5-parameter modes are employed for the stress approximation. We show that the two schemes are free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the relevant Lame constant X. We also establish the equivalence of the methods to two assumed enhanced strain schemes. Finally, we derive reliable and efficient residual-based a posteriori error estimators for the stress in L~2-norm and the displacement in H~1-norm, and verify the theoretical results by some numerical experiments.
机译:假定应力混合方法可改善基于位移的标准有限元的性能,并广泛用于计算力学中。这些方法基于位移和应力变量的Hellin-ger-Reissner变分原理。这项工作分析了由于Pian和Sumihara而产生的两个现有的4节点混合应力四边形元素[T.H.H. Pian,K. Sumihara,假定应力有限元的理性方法,诠释。 J.纽默方法工程。 20(9)(1984)1685-1695]和谢和周[X.P.谢德X周,通过能量相容性优化4节点混合四边形的应力模式,国际。 J.纽默方法工程。 59(2004)293-313],它们在数值基准测试中表现出色。对于有限元,等参双线性插值用于位移近似,而不同的分段无关的五参数模式用于应力近似。从先验估计中的误差范围独立于相关的Lame常数X的意义上看,我们证明了这两种方案都没有泊松锁定。我们还建立了与两种假定的增强应变方案等效的方法。最后,针对L〜2范数的应力和H〜1范数的位移,推导了可靠有效的基于残差的后验误差估计量,并通过一些数值实验验证了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号