首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Solid T-spline construction from boundary representations for genus-zero geometry
【24h】

Solid T-spline construction from boundary representations for genus-zero geometry

机译:零类几何的边界表示的实心T样条构造

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a novel method to construct solid rational T-splines for complex genus-zero geometry from boundary surface triangulations. We first build a parametric mapping between the triangula-tion and the boundary of the parametric domain, a unit cube. After that we adaptively subdivide the cube using an octree subdivision, project the boundary nodes onto the input triangle mesh, and at the same time relocate the interior nodes via mesh smoothing. This process continues until the surface approximation error is less than a pre-defined threshold. T-mesh is then obtained by pillowing the subdivision result one layer on the boundary and its quality is improved. Templates are implemented to handle extraordinary nodes and partial extraordinary nodes in order to get a gap-free T-mesh. The obtained solid T-spline is C~2-continuous except for the local region around each extraordinary node and partial extraordinary node. The boundary surface of the solid T-spline is C~2-continuous everywhere except for the local region around the eight nodes corresponding to the eight corners of the parametric cube. Finally, a Bezier extraction technique is used to facilitate T-spline based isogeometric analysis. The obtained Bezier mesh is analysis-suitable with no negative Jacobians. Several examples are presented in this paper to show the robustness of the algorithm.
机译:本文介绍了一种新的方法,该方法可以根据边界曲面三角剖分为复杂的零类几何构造固体有理T样条。我们首先在三角剖分和参数域的边界(单位立方)之间建立参数映射。之后,我们使用八叉树细分自适应地细分多维数据集,将边界节点投影到输入三角形网格上,同时通过网格平滑重新定位内部节点。该过程一直持续到表面近似误差小于预定义的阈值为止。然后通过将细分结果枕在边界上一层来获得T网格,从而提高了质量。实现模板以处理非常规节点和部分非常规节点,以获取无间隙的T网格。除了每个非常规节点和局部非常规节点周围的局部区域之外,所获得的实心T样条是C〜2连续的。实心T样条的边界表面在各处都是C〜2连续的,除了与参数立方体的八个角相对应的八个节点周围的局部区域。最后,使用贝塞尔曲线提取技术来促进基于T样条的等几何分析。所获得的Bezier网格适用于分析,没有负雅可比矩阵。本文提供了几个示例来说明该算法的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号