首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A fast Monte-Carlo method with a reduced basis of control variates applied to uncertainty propagation and Bayesian estimation
【24h】

A fast Monte-Carlo method with a reduced basis of control variates applied to uncertainty propagation and Bayesian estimation

机译:快速的蒙特卡洛方法,具有减少控制变量的基础,适用于不确定性传播和贝叶斯估计

获取原文
获取原文并翻译 | 示例

摘要

The reduced-basis control-variate Monte-Carlo method was introduced recently in [S. Boyaval, T. Lelie-vre, A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm, Commun. Math. Sci. 8 (2010) 735-762 (Special issue "Mathematical Issues on Complex Fluids")] as an improved Monte-Carlo method, for the fast estimation of many parametrized expected values at many parameter values. We provide here a more complete analysis of the method including precise error estimates and convergence results. We also numerically demonstrate that it can be useful to some parametric frameworks in Uncertainty Quantification, in particular (i) the case where the parametrized expectation is a scalar output of the solution to a Partial Differential Equation (PDE) with stochastic coefficients (an Uncertainty Propagation problem), and (ii) the case where the parametrized expectation is the Bayesian estimator of a scalar output in a similar PDE context. Moreover, in each case, a PDE has to be solved many times for many values of its coefficients. This is costly and we also use a reduced basis of PDE solutions like in [S. Boyaval, C. Le Bris, Y. Maday, N. Nguyen, A. Patera, A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable robin coefficient, Comput. Methods Appl. Mech. Eng. 198 (2009) 3187-3206]. To our knowledge, this is the first combination of various reduced-basis ideas, with a view to reducing as much as possible the computational cost of a simple versatile Monte-Carlo approach to Uncertainty Quantification.
机译:减少基础的控制变量蒙特卡洛方法最近在[S. Boyaval,T. Lelie-vre,使用简化的基础范例Commun进行参数化随机微分方程的方差减少方法。数学。科学8(2010)735-762(专刊“复杂流体的数学问题”)]作为改进的蒙特卡洛方法,用于快速估计许多参数值下的许多参数化期望值。我们在这里提供对该方法的更完整分析,包括精确的误差估计和收敛结果。我们还通过数值方法证明了它对于不确定性量化中的某些参数框架很有用,特别是(i)参数化的期望是具有随机系数的偏微分方程(PDE)解的标量输出(不确定性传播)的情况。问题),以及(ii)参数化期望是类似PDE上下文中标量输出的贝叶斯估计量的情况。此外,在每种情况下,对于其系数的许多值,必须多次求解PDE。这是昂贵的,并且我们也像[S. Boyaval,C。Le Bris,Y。Maday,N。Nguyen,A。Patera,一种基于随机参数的变分问题的简化基础方法:应用于可变罗宾系数的热传导,计算。方法应用。机甲。 198(2009)3187-3206]。据我们所知,这是各种减少基差思想的首次组合,目的是尽可能降低简单的通用蒙特卡洛不确定性量化方法的计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号