首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >B-Spline interpolation of Kirchhoff-Love space rods
【24h】

B-Spline interpolation of Kirchhoff-Love space rods

机译:Kirchhoff-Love空间棒的B样条插值

获取原文
获取原文并翻译 | 示例

摘要

The paper deals with the isogeometric analysis via B-splines of space rods under Kirchhoff-Love hypotheses. The approach was used by Gontier and Vollmer [12] for developing a plane curve element within the framework of the Timoshenko rod model, but they adopted only one patch to represent entirely the geometry of the rod; furthermore the authors developed their theory only for plane elements. In this work we develop an isogeometric approach for the numerical analysis of the 3D Kirchhoff-Love rod theory. We use B-splines and Bezier interpolations and we show that they are able to attain very good accuracy for rod structures, particularly for developing a 3D exact curve element with geometric torsion. The paper presents an original parametrization of the geometric torsion that proves to be very effective. The use of B-splines allows to avoid discontinuities on the geometrical quantities, and particularly on the normal fields, so that even relatively low order interpolation functions are able to yield accurate results.
机译:本文在Kirchhoff-Love假设下通过空间棒的B样条进行等几何分析。 Gontier和Vollmer [12]使用该方法在Timoshenko杆模型的框架内开发平面曲线元素,但他们只采用了一个补丁来完全代表杆的几何形状。此外,作者仅针对平面元素发展了他们的理论。在这项工作中,我们为3D Kirchhoff-Love杆理论的数值分析开发了等几何方法。我们使用B样条曲线和Bezier插值,并且表明它们能够对杆结构实现非常好的精度,特别是对于开发具有几何扭转的3D精确曲线元素。本文提出了几何扭转的原始参数化,证明是非常有效的。 B样条的使用可以避免几何量上的不连续性,特别是在法向场上的不连续性,因此,即使是相对较低阶的插值函数也可以产生准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号