首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment
【24h】

Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment

机译:界面裂纹和在不渐近富集的界面处终止的裂纹的应力强度因子和T应力的数值评估

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we extend the recently proposed extended scaled boundary finite element method (xSBFEM) (Natarajan and Song, 2013) to study fracture parameters of interfacial cracks and cracks terminating at the interface. The approach is also applied to crack growth along the interface and crack deflecting into the material within the context of linear elastic fracture mechanics. Apart from the stress intensity factors, the T-stress can be computed directly from the definitions, without any requirement of path independent integrals. The method aims at improving the capability of the extended finite element method in treating crack tip singularities of cracks at interfaces. An optimum size of the scaled boundary region is presented for multimaterial junctions. The proposed method: (1) does not require special numerical integration technique; (2) does not require a priori knowledge of the asymptotic fields and (3) the stiffness of the region containing the crack tip is computed directly. The robustness of the proposed approach is demonstrated with a few examples in the context of linear elastic fracture mechanics. A discussion on the crack growth along the interface and crack deflecting into the material is also presented.
机译:在本文中,我们扩展了最近提出的扩展比例边界有限元方法(xSBFEM)(Natarajan和Song,2013),以研究界面裂纹的断裂参数和终止于界面的裂纹。该方法还适用于沿界面的裂纹扩展以及在线性弹性断裂力学范围内裂纹偏转进入材料。除了应力强度因子外,还可以直接从定义中计算出T应力,而无需任何与路径无关的积分。该方法旨在提高扩展有限元方法处理界面裂纹尖端的奇异性的能力。提出了针对多材料结的缩放边界区域的最佳大小。提出的方法:(1)不需要特殊的数值积分技术; (2)不需要渐近场的先验知识,(3)包含裂纹尖端的区域的刚度是直接计算的。在线性弹性断裂力学的背景下,通过一些实例证明了所提出方法的鲁棒性。还讨论了沿界面的裂纹扩展和裂纹向材料的偏转。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号