首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Gradient flows and variational principles for cardiac electrophysiology: Toward efficient and robust numerical simulations of the electrical activity of the heart
【24h】

Gradient flows and variational principles for cardiac electrophysiology: Toward efficient and robust numerical simulations of the electrical activity of the heart

机译:心脏电生理学的梯度流和变分原理:实现心脏电活动的高效且鲁棒的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

The computer simulation of the electrical activity of the heart has experienced tremendous advances in the last decade. However, the acceptance of computational methods in the medical community will largely depend on their reliability, efficiency and robustness. In this work, we present a gradient-flow reformulation of the cardiac electrophysiology equations, and propose a minimax variational principle for the time-discretized electrophysiology problem. Based on results from variational analysis, we derive bounds on the time-step size that guarantee the existence and uniqueness of the saddle point, and in turn of the weak solution of the electrophysiology incremental problem. We also show conditions under which the minimax problem is equivalent to an effective minimization principle, which is amenable to a Rayleigh-Ritz finite-element analysis. The derived time-step bounds guarantee the strict convexity of the objective function resulting from spatial discretization, thus ensuring the convergence of gradient-descent methods, The proposed theory is applied to the widely employed FitzHugh-Nagumo model, which is shown to conform to the variational framework proposed in this work. The applicability of the method and its implications on the robustness of time integration are demonstrated by way of numerical simulations of the electrical behavior in a single-cell and 3D wedge and biventricular geometries. We envision that the proposed framework will open the door to the development of robust and efficient electrophysiology models and simulations.
机译:在过去十年中,心脏电活动的计算机模拟经历了巨大的进步。但是,医学界对计算方法的接受将在很大程度上取决于其可靠性,效率和鲁棒性。在这项工作中,我们提出了心脏电生理方程式的梯度流重构,并针对时间离散的电生理问题提出了极小极大变分原理。基于变分分析的结果,我们得出了时间步长的界限,该界限保证了鞍点的存在和唯一性,进而保证了电生理增量问题的弱解。我们还显示了条件下极大极小问题等效于有效极小化原理的条件,该条件适合于Rayleigh-Ritz有限元分析。导出的时间步界保证了空间离散化产生的目标函数的严格凸性,从而确保了梯度下降方法的收敛性。该理论被应用于广泛使用的FitzHugh-Nagumo模型,证明与这项工作中提出的变体框架。该方法的适用性及其对时间积分鲁棒性的影响通过对单细胞,3D楔形和双心室几何形状中的电学行为进行数值模拟来证明。我们预想,所提出的框架将为开发强大而有效的电生理模型和模拟打开大门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号