首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An integral equations method combined minimum norm solution for 3D elastostatics Cauchy problem
【24h】

An integral equations method combined minimum norm solution for 3D elastostatics Cauchy problem

机译:积分方程法结合最小范数解的3D弹性静力学柯西问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we establish new density results for the equilibrium equations. Based on the denseness result of the elastic potential functions, the Cauchy problem for the equilibrium equations is investigated. For this ill-posed problem, we construct a regularizing solution using the single-layer potential function. The well-posedness of the regularizing solution as well as the convergence property is rigorously analyzed. The advantage of the proposed scheme is that the regularizing solution is of the explicit analytic solution and therefore is easy to be implemented. The method combines minimum norm solution with Morozov discrepancy principle to solve an inverse problem. Convergence and stability estimates are then given with some examples for numerical verification on the efficiency of the proposed method. The numerical convergence, accuracy, and stability of the method with respect to the discretisation about the integral equations on pseudo-boundary and the distance between the pseudo-boundary and the real boundary of the solution domain, and decreasing the amount of noise added into the input data, respectively, are also analysed with some examples.
机译:在本文中,我们为平衡方程建立了新的密度结果。基于弹性势函数的密度结果,研究了平衡方程的柯西问题。对于这个不适的问题,我们使用单层势函数构造一个正则化解决方案。严格分析了正则化解的适定性以及收敛性。提出的方案的优点是正则化解决方案是显式解析解决方案,因此易于实现。该方法结合了最小范数解和Morozov差异原理来解决反问题。然后给出收敛性和稳定性估计值,并给出一些实例,以对所提出方法的效率进行数值验证。关于伪边界上积分方程的离散化以及该伪边界与解域实边界之间的距离的离散化方法的数值收敛性,准确性和稳定性,并减少了添加到噪声域中的噪声量还分别通过一些示例分析了输入数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号