首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A modified error in constitutive equation approach for frequency-domain viscoelasticity imaging using interior data
【24h】

A modified error in constitutive equation approach for frequency-domain viscoelasticity imaging using interior data

机译:基于内部数据的频域粘弹性成像的本构方程修正误差方法

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a methodology for the inverse identification of linearly viscoelastic material parameters in the context of steady-state dynamics using interior data. The inverse problem of viscoelasticity imaging is solved by minimizing a modified error in constitutive equation (MECE) functional, subject to the conservation of linear momentum. The treatment is applicable to configurations where boundary conditions may be partially or completely underspecified. The MECE functional measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, and also incorporates the measurement data in a quadratic penalty term. Regularization of the problem is achieved through a penalty parameter in combination with the discrepancy principle due to Morozov. Numerical results demonstrate the robust performance of the method in situations where the available measurement data is incomplete and corrupted by noise of varying levels. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种使用内部数据在稳态动力学背景下线性识别线性粘弹性材料参数的方法。粘弹性成像的逆问题通过最小化本构方程(MECE)函数的修正误差来解决,但要遵守线性动量。该处理适用于边界条件可能部分或完全不足的配置。 MECE函数可测量本构方程中的差异,这些方程将运动学上允许的应变与动态力学上的应力联系起来,并且还将测量数据合并到二次罚项中。通过惩罚参数结合Morozov的差异原理可以使问题正规化。数值结果证明了该方法在可用的测量数据不完整且被不同级别的噪声破坏的情况下的鲁棒性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号