首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem
【24h】

Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem

机译:使用漩涡配对问题比较结构化网格和非结构化网格,可压缩和不可压缩方法

获取原文
获取原文并翻译 | 示例
           

摘要

The accuracy, robustness, dissipation characteristics and efficiency of several structured and unstructured grid methods are investigated with reference to the low Mach double vortex pairing flow problem. The aim of the study is to shed light into the numerical advantages and disadvantages of different numerical discretizations, principally designed for shock-capturing, in low Mach vortical flows. The methods include structured and unstructured finite volume and Lagrange-Remap methods, with accuracy ranging from 2nd to 9th-order, with and without applying low-Mach corrections. Comparison of the schemes is presented for the vortex evolution, momentum thickness, as well as for their numerical dissipation versus the viscous and total dissipation. The study shows that the momentum thickness and large scale features of a basic vortical structure are well resolved even at the lowest grid resolution of 32 x 32 provided that the numerical schemes are of a high-order of accuracy or the numerical framework is sufficiently non-dissipative. The implementation of the finite volume methods in unstructured triangular meshes provides the best results even without low Mach number corrections provided that a higher-order advective discretization for the advective fluxes is employed. The compressible Lagrange-Remap framework is computationally the fastest one, although the numerical error for the momentum thickness does not reduce as fast as for other numerical schemes and computational frameworks, e.g., when higher-order schemes are utilized. It is also shown that the low-Mach number correction has a lesser effect on the results as the order of the spatial accuracy increases. Crown Copyright. (C) 2015 Published by Elsevier B. V. All rights reserved.
机译:参照低马赫双涡流对流问题,研究了几种结构化和非结构化网格方法的准确性,鲁棒性,耗散特性和效率。这项研究的目的是揭示在低马赫涡旋流动中不同数值离散化的数值优势和劣势,这些数值离散化主要是为捕获振动而设计的。该方法包括结构化和非结构化有限体积以及Lagrange-Remap方法,其精度范围为2到9阶,并且可以应用和不应用低马赫校正。比较了这些方案的涡流演化,动量厚度以及它们的数值耗散与粘性耗散和总耗散。研究表明,即使数值格式具有很高的精度,或者数值框架足够不精确,即使在最低的32 x 32网格分辨率下,基本涡旋结构的动量厚度和大规模特征也能得到很好的解决。耗散。如果采用对流通量的高阶对流离散化,即使不进行低马赫数校正,在非结构三角网格中实施有限体积方法也可提供最佳结果。可压缩的Lagrange-Remap框架在计算上是最快的,尽管动量厚度的数值误差没有像其他数值方案和计算框架那样迅速降低,例如在使用高阶方案时。还显示出,随着空间精度的顺序增加,低马赫数校正对结果的影响较小。皇冠版权。 (C)2015,Elsevier B. V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号